In recent years, super high-rise buildings (>500 m) are developing very quickly and become an important frontier of civil engineering. The collapse resistance of super high-rise buildings subjected to extremely str...In recent years, super high-rise buildings (>500 m) are developing very quickly and become an important frontier of civil engineering. The collapse resistance of super high-rise buildings subjected to extremely strong earthquake is a critical problem that must be intensively studied. This paper builds up a nonlinear finite element model of the tallest building in China, Shang- hai Tower (632 m), and proposes the modeling method and failure criteria for different structural elements. The dynamic char- acters of this building are then analyzed, and the possible failure modes and collapse processes due to earthquakes are pre- dicted, as well as the corresponding collapse mechanism. This work will be helpful in collapse prevention and the seismic design of super high-rise buildings.展开更多
In this paper,a 3D upstream finite element method is developed to analyze the ionized electric field around the UHVDC transmission lines including the building near it.The ionized electric field around the building is...In this paper,a 3D upstream finite element method is developed to analyze the ionized electric field around the UHVDC transmission lines including the building near it.The ionized electric field around the building is reduced due to the shielding effect of the building and the shielding distance is about three times its height.The ionized electric field including the human body model on the building and away from the building is also taken into account.The ionized electric field distortion ratio of the human body model is discussed in this paper.The distortion ratios for the positions on the building are less than those on the ground.展开更多
This paper seeks to quantify the social and economic impact of resettlement based on the physiographic element changes post relocation. We focus on communities affected by the Nuozhadu hydropower project, the largest ...This paper seeks to quantify the social and economic impact of resettlement based on the physiographic element changes post relocation. We focus on communities affected by the Nuozhadu hydropower project, the largest existing hydropower project on the mainstream of the Upper Mekong River. Soil and meteorological data were collected from the Soil Spatial Database and the China Terrestrial Ecological Information Spatial Meteorology Database, while social and economic data were collected via field surveys. We have three major con- clusions: (1) Communities will be relocated to a new climate and new elevation, moving from a north tropical climate zone under 700 m to a subtropical climate zone above 700 m. (2) Physiographic element changes due to relocation will reduce household economic income. After relocation, the annual family income of the Shidaimao group decreased by 62%; the annual family income of the other 5 study groups (Lasa, Hani, Nochangchangyi, Mengsa, and Dawazi) dropped by 65%. (3) Communities relocated across the study township are 61.1% less connected with their former relatives after relocation while family-to-family free labor exchange, a previous community norm, decreased by 91%. China's dam resettlement compensation system focuses on the loss of economic resources after relocation. However, this study finds that the physiographic elements of the relocation sites are an important driver of ensuring economic growth and stability after relocation. As a result, we recommend more attention be paid to physiographic continuity when designing relocation models.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 90815025)the Tsinghua University Research Funds (Grant No. 2010THZ02-1)the "Program for New Century Excellent Talents in University"
文摘In recent years, super high-rise buildings (>500 m) are developing very quickly and become an important frontier of civil engineering. The collapse resistance of super high-rise buildings subjected to extremely strong earthquake is a critical problem that must be intensively studied. This paper builds up a nonlinear finite element model of the tallest building in China, Shang- hai Tower (632 m), and proposes the modeling method and failure criteria for different structural elements. The dynamic char- acters of this building are then analyzed, and the possible failure modes and collapse processes due to earthquakes are pre- dicted, as well as the corresponding collapse mechanism. This work will be helpful in collapse prevention and the seismic design of super high-rise buildings.
基金supported by the Key Project of the National Natural Science Foundation of China(Grant No.51037001)the National Basic Research Program of China("973"Program)(Grant No.2011CB209401)
文摘In this paper,a 3D upstream finite element method is developed to analyze the ionized electric field around the UHVDC transmission lines including the building near it.The ionized electric field around the building is reduced due to the shielding effect of the building and the shielding distance is about three times its height.The ionized electric field including the human body model on the building and away from the building is also taken into account.The ionized electric field distortion ratio of the human body model is discussed in this paper.The distortion ratios for the positions on the building are less than those on the ground.
基金The Key Project of National Natural Science Foundation of China, No.U1202232 National Key Technologies R&D Program of China during the 12th Five-Year Plan Period, No.2013BAB06B03 Key Project of National Social Science Foundation of China, No. 11AZD04
文摘This paper seeks to quantify the social and economic impact of resettlement based on the physiographic element changes post relocation. We focus on communities affected by the Nuozhadu hydropower project, the largest existing hydropower project on the mainstream of the Upper Mekong River. Soil and meteorological data were collected from the Soil Spatial Database and the China Terrestrial Ecological Information Spatial Meteorology Database, while social and economic data were collected via field surveys. We have three major con- clusions: (1) Communities will be relocated to a new climate and new elevation, moving from a north tropical climate zone under 700 m to a subtropical climate zone above 700 m. (2) Physiographic element changes due to relocation will reduce household economic income. After relocation, the annual family income of the Shidaimao group decreased by 62%; the annual family income of the other 5 study groups (Lasa, Hani, Nochangchangyi, Mengsa, and Dawazi) dropped by 65%. (3) Communities relocated across the study township are 61.1% less connected with their former relatives after relocation while family-to-family free labor exchange, a previous community norm, decreased by 91%. China's dam resettlement compensation system focuses on the loss of economic resources after relocation. However, this study finds that the physiographic elements of the relocation sites are an important driver of ensuring economic growth and stability after relocation. As a result, we recommend more attention be paid to physiographic continuity when designing relocation models.