为快速、准确地在遥感图像上提取各种农作物类型信息,满足国家农情遥感监测系统的要求,以2002年北京地区主要秋季作物提取为例,利用T erra/M OD IS数据,采用波谱分析的方法,建立一种基于遥感影像全覆盖的秋季作物类型自动提取方法,实现...为快速、准确地在遥感图像上提取各种农作物类型信息,满足国家农情遥感监测系统的要求,以2002年北京地区主要秋季作物提取为例,利用T erra/M OD IS数据,采用波谱分析的方法,建立一种基于遥感影像全覆盖的秋季作物类型自动提取方法,实现主要秋季作物遥感自动识别。首先根据研究区秋季作物的波谱特性和生物学特性,选取了红波段、蓝波段、近红外波段和中短波红外波段作为秋季作物类型提取的工作波段;同时,还利用由这4个波段构建的陆表水分指数和增强型指标指数作为遥感特征参量。其次根据研究区农作物物候历特征,提取了2002年4月到9月共7个时相的M OD IS数据。最后,采用分层决策树方法提取研究区主要秋季作物类型,并进行面积统计。为了验证其精度,与国家农业部农业统计数据进行比较,结果其精度达到86%以上。这表明,仅利用M OD IS自身光谱信息,即可较为准确地提取秋季作物类型信息,精度基本能满足了大尺度农情遥感监测的要求,可以为农业决策部门提供信息服务。展开更多
以Terra/MODIS 8d合成的250m地表反射率数据产品MOD09Q1(MODIS Terra Surface Reflectance 8-Day L3 Global 250m)为主要数据源,采用多源信息水面提取的方法对2000年3月—2008年12月间洞庭湖区水面面积的变化特征和趋势进行了监测分析...以Terra/MODIS 8d合成的250m地表反射率数据产品MOD09Q1(MODIS Terra Surface Reflectance 8-Day L3 Global 250m)为主要数据源,采用多源信息水面提取的方法对2000年3月—2008年12月间洞庭湖区水面面积的变化特征和趋势进行了监测分析。分析结果显示:(1)洞庭湖区水面变化的季节性特征显著,其中枯水期11月—次年4月份间的湖区水面相对较小,基本在500km2左右,而洪水期5—10月份的水面则相对较大,尤其每年的7—9月份最大,维持在2000km2左右,两者几乎相差了4倍;(2)受气候变化与三峡工程初期运行等因素的共同影响,洞庭湖区水域面积总体上呈现出一定程度的下降趋势;(3)通过流域年降水量变化分析和三峡水库蓄水运行前后松滋、太平和藕池三口年径流量变化对比,发现流域内降水带来的入湖水量偏少是近年来洞庭湖区水面面积减小的主要驱动因子;(4)近年来9、10月份洞庭湖流域降水减少与三峡水库汛末蓄水同期,将共同造就最终入湖水量锐减,加重湖区夏秋连旱程度,进而诱发系列生态安全问题。展开更多
With the development of vegetation indices, the reflection capability of vegetation indices to the state of vegetation has been improved in various degrees. Especially, the vegetation index of Terra/MODIS-EVI is belie...With the development of vegetation indices, the reflection capability of vegetation indices to the state of vegetation has been improved in various degrees. Especially, the vegetation index of Terra/MODIS-EVI is believed to have the highest sensitivity to the seasonality of vegetation. This study compares the reflection susceptibility of three vegetation indices (NOAA/AVHRR-NDVI, Terra/MODIS-NDVI and Terra/MODIS-EVI) to the seasonal variations of vegetation in the mid-south of Yunnan Province of China. It has been found that Terra/MODIS-EVI does best in the elimination of external disturbance. Firstly, it obviously improves the linear relationship with vegetation cover degree, especially in the high vegetation coverage area. Secondly, it avoids the emergence of vegetation index saturation. Thirdly, it reduces the environmental influence including both effects of atmosphere and soil. So it is believed that the Terra/MODIS-EVI can offer excellent tool for quantitative research of remote sensing, and has realized to be oriented by data with high quality.展开更多
This study investigated the seasonal variations of the normalized difference vegetation index(NDVI) and its relationships with climatic variables and topography in a small-scale(20 km×20 km) area(i.e., Tsogt...This study investigated the seasonal variations of the normalized difference vegetation index(NDVI) and its relationships with climatic variables and topography in a small-scale(20 km×20 km) area(i.e., Tsogt-Ovoo village) within the desert steppe zone of Mongolia using in-situ observed climate data and satellite remote sensing data. We found that the topography is very important for vegetation growth in the desert steppe although the summer precipitation is the constraining factor. The unexpectedly high NDVI(up to 0.56), as well as the high aboveground biomass, in the valley bottom was primarily resulted from the topography-modulated redistribution of overland flow after relatively heavy precipitation events during the growing season. This makes the valley bottoms in desert steppes not only reliable feeding resources for livestock but also heavens for wild lives. But, the detected large standard deviation of annual maximum NDVI(NDVI_(max)) from 2000 to 2013 in the valley bottom in response to rather variable precipitation implies that the valley bottoms under desert steppe climates are more vulnerable to climatic change.展开更多
论文利用2005年Terra/MODIS卫星8天合成的250m地表反射率数据(MODIS Terra Sur-face Reflectance 8-Day L3 Global 250 m:MOD09Q1)构建的时间序列数据集,通过计算NDVI指数,结合典型地物的谱间特征,并借助SRTM数字高程数据,采用...论文利用2005年Terra/MODIS卫星8天合成的250m地表反射率数据(MODIS Terra Sur-face Reflectance 8-Day L3 Global 250 m:MOD09Q1)构建的时间序列数据集,通过计算NDVI指数,结合典型地物的谱间特征,并借助SRTM数字高程数据,采用多源信息提取的方法对洞庭湖地区2005年水域面积变化进行了动态监测。结合Terra/MODIS数据特点,提出了全年最大淹没时间指数的概念,并通过对该指数的构建,完成了对洞庭湖地区重点水域的淹没风险评价。结果表明:①文中提出的基于Terra/MODIS MOD09Q1数据的多源信息水体提取方法,通过更高空间分辨率ENVISAT/ASAR数据以及水文测站水位数据的检验表明,是切实可行的;②2005年洞庭湖地区水域面积变化特征总体表现为,在11-4月份期间水域面积较小,而在5-10月份期间较大。其中,4月份最小,9月份最大,两者相差了几乎1.5倍,受地区季节性降雨的年内分布规律及长江主汛期的影响显著;③通过全年最大淹没时间指数的计算发现,占研究区总面积84.13%的年内持久陆地和持久水域区域,基本上没有防洪压力,而剩余的15.87%的年内变化水域,由于潜在淹没风险的存在,则需要抗洪防险部门进行重点防控;④文中多源信息水面提取方法的实现以及全年最大淹没时间指数概念的提出,为今后更加深入地探讨三峡工程建成运营对洞庭湖地区水域变化以及江湖关系的影响奠定了基础。展开更多
文摘为快速、准确地在遥感图像上提取各种农作物类型信息,满足国家农情遥感监测系统的要求,以2002年北京地区主要秋季作物提取为例,利用T erra/M OD IS数据,采用波谱分析的方法,建立一种基于遥感影像全覆盖的秋季作物类型自动提取方法,实现主要秋季作物遥感自动识别。首先根据研究区秋季作物的波谱特性和生物学特性,选取了红波段、蓝波段、近红外波段和中短波红外波段作为秋季作物类型提取的工作波段;同时,还利用由这4个波段构建的陆表水分指数和增强型指标指数作为遥感特征参量。其次根据研究区农作物物候历特征,提取了2002年4月到9月共7个时相的M OD IS数据。最后,采用分层决策树方法提取研究区主要秋季作物类型,并进行面积统计。为了验证其精度,与国家农业部农业统计数据进行比较,结果其精度达到86%以上。这表明,仅利用M OD IS自身光谱信息,即可较为准确地提取秋季作物类型信息,精度基本能满足了大尺度农情遥感监测的要求,可以为农业决策部门提供信息服务。
文摘以Terra/MODIS 8d合成的250m地表反射率数据产品MOD09Q1(MODIS Terra Surface Reflectance 8-Day L3 Global 250m)为主要数据源,采用多源信息水面提取的方法对2000年3月—2008年12月间洞庭湖区水面面积的变化特征和趋势进行了监测分析。分析结果显示:(1)洞庭湖区水面变化的季节性特征显著,其中枯水期11月—次年4月份间的湖区水面相对较小,基本在500km2左右,而洪水期5—10月份的水面则相对较大,尤其每年的7—9月份最大,维持在2000km2左右,两者几乎相差了4倍;(2)受气候变化与三峡工程初期运行等因素的共同影响,洞庭湖区水域面积总体上呈现出一定程度的下降趋势;(3)通过流域年降水量变化分析和三峡水库蓄水运行前后松滋、太平和藕池三口年径流量变化对比,发现流域内降水带来的入湖水量偏少是近年来洞庭湖区水面面积减小的主要驱动因子;(4)近年来9、10月份洞庭湖流域降水减少与三峡水库汛末蓄水同期,将共同造就最终入湖水量锐减,加重湖区夏秋连旱程度,进而诱发系列生态安全问题。
基金Under the auspices of National Basic Research Program of China (No 2003CB415101)PhD Foundation of Henan Polytechnic University (No B2006-11)
文摘With the development of vegetation indices, the reflection capability of vegetation indices to the state of vegetation has been improved in various degrees. Especially, the vegetation index of Terra/MODIS-EVI is believed to have the highest sensitivity to the seasonality of vegetation. This study compares the reflection susceptibility of three vegetation indices (NOAA/AVHRR-NDVI, Terra/MODIS-NDVI and Terra/MODIS-EVI) to the seasonal variations of vegetation in the mid-south of Yunnan Province of China. It has been found that Terra/MODIS-EVI does best in the elimination of external disturbance. Firstly, it obviously improves the linear relationship with vegetation cover degree, especially in the high vegetation coverage area. Secondly, it avoids the emergence of vegetation index saturation. Thirdly, it reduces the environmental influence including both effects of atmosphere and soil. So it is believed that the Terra/MODIS-EVI can offer excellent tool for quantitative research of remote sensing, and has realized to be oriented by data with high quality.
基金financially supported by the Japan Society for the Promotion of Science RONPAKU Program (MECS-11319)a Budget Request of Tottori Universitysponsored by special coordination funds from the Ministry of Education, Culture, Sports, Science and Technology of the Japan
文摘This study investigated the seasonal variations of the normalized difference vegetation index(NDVI) and its relationships with climatic variables and topography in a small-scale(20 km×20 km) area(i.e., Tsogt-Ovoo village) within the desert steppe zone of Mongolia using in-situ observed climate data and satellite remote sensing data. We found that the topography is very important for vegetation growth in the desert steppe although the summer precipitation is the constraining factor. The unexpectedly high NDVI(up to 0.56), as well as the high aboveground biomass, in the valley bottom was primarily resulted from the topography-modulated redistribution of overland flow after relatively heavy precipitation events during the growing season. This makes the valley bottoms in desert steppes not only reliable feeding resources for livestock but also heavens for wild lives. But, the detected large standard deviation of annual maximum NDVI(NDVI_(max)) from 2000 to 2013 in the valley bottom in response to rather variable precipitation implies that the valley bottoms under desert steppe climates are more vulnerable to climatic change.
文摘论文利用2005年Terra/MODIS卫星8天合成的250m地表反射率数据(MODIS Terra Sur-face Reflectance 8-Day L3 Global 250 m:MOD09Q1)构建的时间序列数据集,通过计算NDVI指数,结合典型地物的谱间特征,并借助SRTM数字高程数据,采用多源信息提取的方法对洞庭湖地区2005年水域面积变化进行了动态监测。结合Terra/MODIS数据特点,提出了全年最大淹没时间指数的概念,并通过对该指数的构建,完成了对洞庭湖地区重点水域的淹没风险评价。结果表明:①文中提出的基于Terra/MODIS MOD09Q1数据的多源信息水体提取方法,通过更高空间分辨率ENVISAT/ASAR数据以及水文测站水位数据的检验表明,是切实可行的;②2005年洞庭湖地区水域面积变化特征总体表现为,在11-4月份期间水域面积较小,而在5-10月份期间较大。其中,4月份最小,9月份最大,两者相差了几乎1.5倍,受地区季节性降雨的年内分布规律及长江主汛期的影响显著;③通过全年最大淹没时间指数的计算发现,占研究区总面积84.13%的年内持久陆地和持久水域区域,基本上没有防洪压力,而剩余的15.87%的年内变化水域,由于潜在淹没风险的存在,则需要抗洪防险部门进行重点防控;④文中多源信息水面提取方法的实现以及全年最大淹没时间指数概念的提出,为今后更加深入地探讨三峡工程建成运营对洞庭湖地区水域变化以及江湖关系的影响奠定了基础。