The HoekeBrown criterion was introduced in 1980 to provide input for the design of underground excavations in rock.The criterion now incorporates both intact rock and discontinuities,such as joints,characterized by th...The HoekeBrown criterion was introduced in 1980 to provide input for the design of underground excavations in rock.The criterion now incorporates both intact rock and discontinuities,such as joints,characterized by the geological strength index(GSI),into a system designed to estimate the mechanical behaviour of typical rock masses encountered in tunnels,slopes and foundations.The strength and deformation properties of intact rock,derived from laboratory tests,are reduced based on the properties of discontinuities in the rock mass.The nonlinear HoekeBrown criterion for rock masses is widely accepted and has been applied in many projects around the world.While,in general,it has been found to provide satisfactory estimates,there are several questions on the limits of its applicability and on the inaccuracies related to the quality of the input data.This paper introduces relatively few fundamental changes,but it does discuss many of the issues of utilization and presents case histories to demonstrate practical applications of the criterion and the GSI system.展开更多
The initiation and propagation of failure in intact rock are a matter of fundamental importance in rock engineering. At low confining pressures, tensile fracturing initiates in samples at 40%-60% of the uniaxial compr...The initiation and propagation of failure in intact rock are a matter of fundamental importance in rock engineering. At low confining pressures, tensile fracturing initiates in samples at 40%-60% of the uniaxial compressive strength and as loading continues, and these tensile fractures increase in density, ultimately coalescing and leading to strain localization and macro-scale shear failure of the samples. The Griffith theory of brittle failure provides a simplified model and a useful basis for discussion of this process. The Hoek-Brown failure criterion provides an acceptable estimate of the peak strength for shear failure but a cutoff has been added for tensile conditions. However, neither of these criteria adequately explains the progressive coalition of tensile cracks and the final shearing of the specimens at higher confining stresses. Grain-based numerical models, in which the grain size distributions as well as the physical properties of the component grains of the rock are incorporated, have proved to be very useful in studying these more complex fracture processes.展开更多
文摘The HoekeBrown criterion was introduced in 1980 to provide input for the design of underground excavations in rock.The criterion now incorporates both intact rock and discontinuities,such as joints,characterized by the geological strength index(GSI),into a system designed to estimate the mechanical behaviour of typical rock masses encountered in tunnels,slopes and foundations.The strength and deformation properties of intact rock,derived from laboratory tests,are reduced based on the properties of discontinuities in the rock mass.The nonlinear HoekeBrown criterion for rock masses is widely accepted and has been applied in many projects around the world.While,in general,it has been found to provide satisfactory estimates,there are several questions on the limits of its applicability and on the inaccuracies related to the quality of the input data.This paper introduces relatively few fundamental changes,but it does discuss many of the issues of utilization and presents case histories to demonstrate practical applications of the criterion and the GSI system.
文摘The initiation and propagation of failure in intact rock are a matter of fundamental importance in rock engineering. At low confining pressures, tensile fracturing initiates in samples at 40%-60% of the uniaxial compressive strength and as loading continues, and these tensile fractures increase in density, ultimately coalescing and leading to strain localization and macro-scale shear failure of the samples. The Griffith theory of brittle failure provides a simplified model and a useful basis for discussion of this process. The Hoek-Brown failure criterion provides an acceptable estimate of the peak strength for shear failure but a cutoff has been added for tensile conditions. However, neither of these criteria adequately explains the progressive coalition of tensile cracks and the final shearing of the specimens at higher confining stresses. Grain-based numerical models, in which the grain size distributions as well as the physical properties of the component grains of the rock are incorporated, have proved to be very useful in studying these more complex fracture processes.