This paper is concerned with the cooperative target tracking of multiple autonomous surface vehicles(ASVs)under switching interaction topologies.For the target to be tracked,only its position can be measured/received ...This paper is concerned with the cooperative target tracking of multiple autonomous surface vehicles(ASVs)under switching interaction topologies.For the target to be tracked,only its position can be measured/received by some of the ASVs,and its velocity is unavailable to all the ASVs.A distributed extended state observer taking into consideration switching topologies is designed to integrally estimate unknown target dynamics and neighboring ASVs'dynamics.Accordingly,a novel kinematic controller is designed,which takes full advantage of known information and avoids the approximation of some virtual control vectors.Moreover,a disturbance observer is presented to estimate unknown time-varying environmental disturbance.Furthermore,a distributed dynamic controller is designed to regulate the involved ASVs to cooperatively track the target.It enables each ASV to adjust its forces and moments according to the received information from its neighbors.The effectiveness of the derived results is demonstrated through cooperative target tracking performance analysis for a tracking system composed of five interacting ASVs.展开更多
针对传统恒虚警(Constant False-Alarm Rate,CFAR)检测器在非均匀噪声环境下检测性能较差的问题,本文提出了一种基于排序的自动剔除Switching-CFAR(Automatic Censoring Switching-CFAR Detector Based on Sorting,ACS-CFAR)检测器.选...针对传统恒虚警(Constant False-Alarm Rate,CFAR)检测器在非均匀噪声环境下检测性能较差的问题,本文提出了一种基于排序的自动剔除Switching-CFAR(Automatic Censoring Switching-CFAR Detector Based on Sorting,ACS-CFAR)检测器.选择参考窗中间单元为测试单元,其余单元按照幅值升序排列,根据两个分界点位置参数,选择合适的参考单元集进行背景噪声功率估计以及结合参考单元数和目标恒虚警率计算相关系数,得到最优检测门限.经过仿真对比,ACS-CFAR检测器在均匀噪声环境下检测率为98.73%,接近于单元平均恒虚警(CA-CFAR)检测器;在非均匀噪声环境下检测率为98.16%,优于可变索引恒虚警(VI-CFAR)和自动删除平均恒虚警(ACCA-CFAR)检测器,虚警率误差均控制在0.10%以内.结果表明,本文提出的ACS-CFAR检测器在均匀噪声环境以及杂波和多目标干扰环境下均具有较好的检测性能.展开更多
为了解决传统的目标检测算法在非均匀噪声环境下检测性能严重下降的问题,提出了一种基于双剔除门限的Switching-CFAR(switching-constant false alarm rate based on dual censoring thresholds,DCS-CFAR)目标检测算法。基于参考窗参考...为了解决传统的目标检测算法在非均匀噪声环境下检测性能严重下降的问题,提出了一种基于双剔除门限的Switching-CFAR(switching-constant false alarm rate based on dual censoring thresholds,DCS-CFAR)目标检测算法。基于参考窗参考单元样本期望值和测试单元,得到双重剔除功率比较门限。通过双重比较,剔除参考窗中极大值参考单元,根据剩余参考单元数,选择合适的参考单元来估计背景噪声功率,并得到功率检测门限。在Matlab环境下,通过蒙特卡洛方法和Swerling II模型对DCS-CFAR目标检测算法的关键参数,以及在各种仿真环境下与其它目标检测算法的检测性能进行了仿真对比分析,DCS-CFAR目标检测算法在均匀背景噪声下,检测率为98.76%,接近于CA-CFAR算法;在杂波和多干扰目标环境下,检测率分别为97.83%和98.23%。在均匀和非均匀噪声环境下,DCS-CFAR检测算法均优于ACCA-CFAR和GO-CFAR算法。结果表明,提出的DCS-CFAR检测算法在均匀和非均匀噪声环境下,均具有良好的检测性能。展开更多
A switching variability index (SVl) constant false alarm rate (CFAR) detector is proposed for improving the detection performance of VI-CFAR detectors in multiple targets backgrounds. When the presence of non-homo...A switching variability index (SVl) constant false alarm rate (CFAR) detector is proposed for improving the detection performance of VI-CFAR detectors in multiple targets backgrounds. When the presence of non-homogeneity in CFAR reference windows is indicated by a VI-CFAR detector, a switching- CFAR detector is introduced to optimize the performance of the VI-CFAR detector in homogeneous, multiple targets and clutter edge backgrounds. The structure and parameters selection method of the SVI-CFAR detector is presented. Comparisons with classic CFAR detectors and recently proposed detectors are also given. Theoretical analysis and simulation results show that SVICFAR detector maintains the good performance of the VI-CFAR detector in homogeneous and clutter edge backgrounds, while greatly improving the capacity of anti-multi targets.展开更多
基金supported in part by the National Science Foundation of China(61873335,61833011)the Project of Scie nce and Technology Commission of Shanghai Municipality,China(20ZR1420200,21SQBS01600,19510750300,21190780300)。
文摘This paper is concerned with the cooperative target tracking of multiple autonomous surface vehicles(ASVs)under switching interaction topologies.For the target to be tracked,only its position can be measured/received by some of the ASVs,and its velocity is unavailable to all the ASVs.A distributed extended state observer taking into consideration switching topologies is designed to integrally estimate unknown target dynamics and neighboring ASVs'dynamics.Accordingly,a novel kinematic controller is designed,which takes full advantage of known information and avoids the approximation of some virtual control vectors.Moreover,a disturbance observer is presented to estimate unknown time-varying environmental disturbance.Furthermore,a distributed dynamic controller is designed to regulate the involved ASVs to cooperatively track the target.It enables each ASV to adjust its forces and moments according to the received information from its neighbors.The effectiveness of the derived results is demonstrated through cooperative target tracking performance analysis for a tracking system composed of five interacting ASVs.
文摘针对传统恒虚警(Constant False-Alarm Rate,CFAR)检测器在非均匀噪声环境下检测性能较差的问题,本文提出了一种基于排序的自动剔除Switching-CFAR(Automatic Censoring Switching-CFAR Detector Based on Sorting,ACS-CFAR)检测器.选择参考窗中间单元为测试单元,其余单元按照幅值升序排列,根据两个分界点位置参数,选择合适的参考单元集进行背景噪声功率估计以及结合参考单元数和目标恒虚警率计算相关系数,得到最优检测门限.经过仿真对比,ACS-CFAR检测器在均匀噪声环境下检测率为98.73%,接近于单元平均恒虚警(CA-CFAR)检测器;在非均匀噪声环境下检测率为98.16%,优于可变索引恒虚警(VI-CFAR)和自动删除平均恒虚警(ACCA-CFAR)检测器,虚警率误差均控制在0.10%以内.结果表明,本文提出的ACS-CFAR检测器在均匀噪声环境以及杂波和多目标干扰环境下均具有较好的检测性能.
文摘为了解决传统的目标检测算法在非均匀噪声环境下检测性能严重下降的问题,提出了一种基于双剔除门限的Switching-CFAR(switching-constant false alarm rate based on dual censoring thresholds,DCS-CFAR)目标检测算法。基于参考窗参考单元样本期望值和测试单元,得到双重剔除功率比较门限。通过双重比较,剔除参考窗中极大值参考单元,根据剩余参考单元数,选择合适的参考单元来估计背景噪声功率,并得到功率检测门限。在Matlab环境下,通过蒙特卡洛方法和Swerling II模型对DCS-CFAR目标检测算法的关键参数,以及在各种仿真环境下与其它目标检测算法的检测性能进行了仿真对比分析,DCS-CFAR目标检测算法在均匀背景噪声下,检测率为98.76%,接近于CA-CFAR算法;在杂波和多干扰目标环境下,检测率分别为97.83%和98.23%。在均匀和非均匀噪声环境下,DCS-CFAR检测算法均优于ACCA-CFAR和GO-CFAR算法。结果表明,提出的DCS-CFAR检测算法在均匀和非均匀噪声环境下,均具有良好的检测性能。
基金supported by the National Natural Science Foundation of China(61102158)the China Postdoctoral Science Foundation(2011M500667)
文摘A switching variability index (SVl) constant false alarm rate (CFAR) detector is proposed for improving the detection performance of VI-CFAR detectors in multiple targets backgrounds. When the presence of non-homogeneity in CFAR reference windows is indicated by a VI-CFAR detector, a switching- CFAR detector is introduced to optimize the performance of the VI-CFAR detector in homogeneous, multiple targets and clutter edge backgrounds. The structure and parameters selection method of the SVI-CFAR detector is presented. Comparisons with classic CFAR detectors and recently proposed detectors are also given. Theoretical analysis and simulation results show that SVICFAR detector maintains the good performance of the VI-CFAR detector in homogeneous and clutter edge backgrounds, while greatly improving the capacity of anti-multi targets.