针对人工蜂群算法在求解过程中存在收敛速度慢、易陷入局部最优解等缺点,提出了基于加强局部搜索策略的人工蜂群算法(ABC Based On Enhancing Local Search Ability,LSABC).一方面,在雇佣蜂搜索阶段,利用两种不同的搜索公式得到两组解,...针对人工蜂群算法在求解过程中存在收敛速度慢、易陷入局部最优解等缺点,提出了基于加强局部搜索策略的人工蜂群算法(ABC Based On Enhancing Local Search Ability,LSABC).一方面,在雇佣蜂搜索阶段,利用两种不同的搜索公式得到两组解,并将适应度最佳者作为候选解,增加解的多样性;同时,在搜索公式中加入个体的双重认知能力平衡算法的勘探和开发能力.另一方面,在侦察蜂搜索阶段,采用禁忌搜索策略,将局部极值存入禁忌表中,帮助算法跳脱局部最优解,达到避免算法早熟的同时加快算法收敛速度的目的.由于LSABC算法的改进与粒子群算法相似,为验证LSABC算法的寻优性能,针对8个经典基准函数,选取标准ABC算法、PSO算法、EABC算法、RLPSO算法及LSABC算法分别进行对比测试.计算实验结果表明,LSABC算法在求解精度和收敛速度方面明显提高,易于跳脱局部最优解.展开更多
文摘针对人工蜂群算法在求解过程中存在收敛速度慢、易陷入局部最优解等缺点,提出了基于加强局部搜索策略的人工蜂群算法(ABC Based On Enhancing Local Search Ability,LSABC).一方面,在雇佣蜂搜索阶段,利用两种不同的搜索公式得到两组解,并将适应度最佳者作为候选解,增加解的多样性;同时,在搜索公式中加入个体的双重认知能力平衡算法的勘探和开发能力.另一方面,在侦察蜂搜索阶段,采用禁忌搜索策略,将局部极值存入禁忌表中,帮助算法跳脱局部最优解,达到避免算法早熟的同时加快算法收敛速度的目的.由于LSABC算法的改进与粒子群算法相似,为验证LSABC算法的寻优性能,针对8个经典基准函数,选取标准ABC算法、PSO算法、EABC算法、RLPSO算法及LSABC算法分别进行对比测试.计算实验结果表明,LSABC算法在求解精度和收敛速度方面明显提高,易于跳脱局部最优解.