The reaction mechanisms of Ti(~3F) + CH2C12→CH2=TiCl2 and Ti(~3F) + CHC13→HC÷TiCl3 were investigated with Gaussian 03 program package at the B3PW91/6-311++G(d,p)level.The computational results reveale...The reaction mechanisms of Ti(~3F) + CH2C12→CH2=TiCl2 and Ti(~3F) + CHC13→HC÷TiCl3 were investigated with Gaussian 03 program package at the B3PW91/6-311++G(d,p)level.The computational results revealed that:1) Both reaction systems are initiated by Ti(~3F) atom attacking the C atom of CH2C12 and CHCl3 to activate a C-Cl bond;2) Both reaction systems were carried out via triplet reaction channels;3) CH2=TiCl2 has singlet and triplet isomers,and the singlet one is more stable;4) The HOMO of CH2=TiCl2(S) illustrates a π-bonding interaction between C and Ti;5) Only singlet HC÷TiCl3 was located,and the Mulliken atomic spin densities show that the two single electrons are mostly on the C atom.展开更多
The mechanism of the spin-forbidden reaction Ti+(4F, 3d24s1) + C2H4 → TiC2H2+ (2A2) + H2 on both doublet and quartet potential energy surfaces has been investigated at the B3LYP level of theory. Crossing points betwe...The mechanism of the spin-forbidden reaction Ti+(4F, 3d24s1) + C2H4 → TiC2H2+ (2A2) + H2 on both doublet and quartet potential energy surfaces has been investigated at the B3LYP level of theory. Crossing points between the potential energy surfaces and the possible spin inversion process are discussed by means of spin-orbit coupling (SOC) calculations. The strength of the SOC between the low-lying quartet state and the doublet state is 59.3 cm-1 in the intermediate complex IM1-4B2. Thus, the changes of its spin multiplicity may occur from the quartet to the doublet surface to form IM1- 2A1, leading to a sig-nificant decrease in the barrier height on the quartet PES. After the insertion intermediate IM2, two dis-tinct reaction paths on the doublet PES have been found, i.e., a stepwise path and a concerted path. The latter is found to be the lowest energy path on the doublet PES to exothermic TiC2H2+ (2A2) + H2 products, with the active barrier of 4.52 kcal/mol. In other words, this reaction proceeds in the following way: Ti++C2H4 →4IC→IM1-4B2→4,2ISC→IM1- 2A1→[2TSins]→IM2→[2TSMCTS]→IM5→TiC2H2+(2A2)+H2.展开更多
基金financially supported by the National Natural Science Foundation of China(11174215)Natural Science Foundation of Shandong Province(ZR2012BL10)the University Science and Technology Project of Shandong Province(No.J13LD05)
文摘The reaction mechanisms of Ti(~3F) + CH2C12→CH2=TiCl2 and Ti(~3F) + CHC13→HC÷TiCl3 were investigated with Gaussian 03 program package at the B3PW91/6-311++G(d,p)level.The computational results revealed that:1) Both reaction systems are initiated by Ti(~3F) atom attacking the C atom of CH2C12 and CHCl3 to activate a C-Cl bond;2) Both reaction systems were carried out via triplet reaction channels;3) CH2=TiCl2 has singlet and triplet isomers,and the singlet one is more stable;4) The HOMO of CH2=TiCl2(S) illustrates a π-bonding interaction between C and Ti;5) Only singlet HC÷TiCl3 was located,and the Mulliken atomic spin densities show that the two single electrons are mostly on the C atom.
基金Supported by ‘Qinglan’ Talent Engineering Funds by Tianshui Normal University
文摘The mechanism of the spin-forbidden reaction Ti+(4F, 3d24s1) + C2H4 → TiC2H2+ (2A2) + H2 on both doublet and quartet potential energy surfaces has been investigated at the B3LYP level of theory. Crossing points between the potential energy surfaces and the possible spin inversion process are discussed by means of spin-orbit coupling (SOC) calculations. The strength of the SOC between the low-lying quartet state and the doublet state is 59.3 cm-1 in the intermediate complex IM1-4B2. Thus, the changes of its spin multiplicity may occur from the quartet to the doublet surface to form IM1- 2A1, leading to a sig-nificant decrease in the barrier height on the quartet PES. After the insertion intermediate IM2, two dis-tinct reaction paths on the doublet PES have been found, i.e., a stepwise path and a concerted path. The latter is found to be the lowest energy path on the doublet PES to exothermic TiC2H2+ (2A2) + H2 products, with the active barrier of 4.52 kcal/mol. In other words, this reaction proceeds in the following way: Ti++C2H4 →4IC→IM1-4B2→4,2ISC→IM1- 2A1→[2TSins]→IM2→[2TSMCTS]→IM5→TiC2H2+(2A2)+H2.