We put forward a large-area and cost-effective method to fabricate superhydrophobic coating by introducing in-situ functionalized nano-SiO2 into side-amino modified hydroxy-terminated polydimethylsiloxane (SA-HTPDMS...We put forward a large-area and cost-effective method to fabricate superhydrophobic coating by introducing in-situ functionalized nano-SiO2 into side-amino modified hydroxy-terminated polydimethylsiloxane (SA-HTPDMS) curing system. With the characterization using water contact angle (WCA) tester, Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), atomic force microscopy (AFM) and simultaneous thermal analysis, the as-prepared coating displayed a tremendous WCA of 154.8±1°, sliding angle (SA) about 3.5° and stable self-cleaning property range from -10 to 80 ℃. It was also found that the synergistic effect of surface micro-nano hierarchical structure and chemical hydrophobicity, stability from matrix had made contributions to the superhydrophobicity and excellent heat resistance up to 300 ℃.展开更多
A new series of (E)-5-[2-(N-hexylcarbazolyl)vinyl]furan chromophores with various accepters have been synthesized by the Knoevenagel condensation of (E)-5-[2-(N- hexylcarbazolyl) vinyl]-2-furaldehydes with malononitri...A new series of (E)-5-[2-(N-hexylcarbazolyl)vinyl]furan chromophores with various accepters have been synthesized by the Knoevenagel condensation of (E)-5-[2-(N- hexylcarbazolyl) vinyl]-2-furaldehydes with malononitrile, 1,3-diethyl-2-thiobarbituric acid, or 3-phenyl-5-isoxazol one, respectively. They are characterized by H-1-NMR, FT- IR, UV-VIS, MS and elemental analysis, and have shown strong solvatochromism and high thermal stability.展开更多
High applied thermal-stability and superior structural property for activated carbon adsorbent are extremely promising,which also is the determining short slab in volatile organic compounds(VOCs)adsorption application...High applied thermal-stability and superior structural property for activated carbon adsorbent are extremely promising,which also is the determining short slab in volatile organic compounds(VOCs)adsorption applications.Herein,we develop the outstanding engineering carbon adsorbents from waste shaddock peel which affords greatly-enhanced thermal-stability and super structural property(S_(Lang)=4962.6 m2·g^(-1),Vmicro=1.67 cm^(3)·g^(-1)).Such character endows the obtained adsorbent with ultrahigh adsorption capture performance of VOCs specific to benzene(16.58 mmol·g^(-1))and toluene(15.50 mmol·g^(-1),far beyond traditional zeolite and activated carbon even MOFs materials.The structural expression characters were accurately correlated with excellent adsorption efficiency of VOCs by studying synthetic factor-controlling comparative samples.Ulteriorly,adsorption selectivity prediction at different relative humidity was demonstrated through DIH(difference of the isosteric heats),exceedingly highlighting great superiority(nearly sixfold)in selective adsorption of toluene compared to volatile benzene.Our findings provide the possibility for practical industrial application and fabrication of waste biomass-derived outstanding biochar adsorbent in the environmental treatment of threatening VOCs pollutants.展开更多
SiGe SOI p-MOSFET在高频、高速、低功耗、抗辐射方面具有极大的优势。但二氧化硅埋层较低的热导率以及SiGe材料较低的热稳定性,使器件内部自加热效应的减弱或消除成为提高器件温度特性的关键因素。对应变SiGe SOI p-MOSFET温度特性机...SiGe SOI p-MOSFET在高频、高速、低功耗、抗辐射方面具有极大的优势。但二氧化硅埋层较低的热导率以及SiGe材料较低的热稳定性,使器件内部自加热效应的减弱或消除成为提高器件温度特性的关键因素。对应变SiGe SOI p-MOSFET温度特性机理进行研究,给出了三种缓解MOS-FET器件内部自加热效应的结构,并对其效果进行对比分析。结果表明:DSOI结构不适宜于低压全耗尽型SOI器件;Si3N4-DSOI结构对自加热的改善幅度较小;Si3N4埋层结构效果最好,尤其在低温领域改善更为明显。展开更多
基金Supported by National High Technology Research and Development ProgramofChina(863Program)(No.2003AA305920)
文摘We put forward a large-area and cost-effective method to fabricate superhydrophobic coating by introducing in-situ functionalized nano-SiO2 into side-amino modified hydroxy-terminated polydimethylsiloxane (SA-HTPDMS) curing system. With the characterization using water contact angle (WCA) tester, Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), atomic force microscopy (AFM) and simultaneous thermal analysis, the as-prepared coating displayed a tremendous WCA of 154.8±1°, sliding angle (SA) about 3.5° and stable self-cleaning property range from -10 to 80 ℃. It was also found that the synergistic effect of surface micro-nano hierarchical structure and chemical hydrophobicity, stability from matrix had made contributions to the superhydrophobicity and excellent heat resistance up to 300 ℃.
基金This work was supported by the NationalNatural Science Foundation of China(No.29774018).
文摘A new series of (E)-5-[2-(N-hexylcarbazolyl)vinyl]furan chromophores with various accepters have been synthesized by the Knoevenagel condensation of (E)-5-[2-(N- hexylcarbazolyl) vinyl]-2-furaldehydes with malononitrile, 1,3-diethyl-2-thiobarbituric acid, or 3-phenyl-5-isoxazol one, respectively. They are characterized by H-1-NMR, FT- IR, UV-VIS, MS and elemental analysis, and have shown strong solvatochromism and high thermal stability.
基金financially supported by National Natural Science Foundation of China (21908085)Natural Science Foundation of Jiangsu Province, China (BK20190961)+2 种基金Postdoctoral Research Foundation of Jiangsu Province (2020Z291)Foundation from Marine Equipment and Technology Institute for Jiangsu University of Science and Technology, China (HZ20190004)High-tech Ship Research Project of the Ministry of Industry and Information Technology, China (No. [2017] 614)
文摘High applied thermal-stability and superior structural property for activated carbon adsorbent are extremely promising,which also is the determining short slab in volatile organic compounds(VOCs)adsorption applications.Herein,we develop the outstanding engineering carbon adsorbents from waste shaddock peel which affords greatly-enhanced thermal-stability and super structural property(S_(Lang)=4962.6 m2·g^(-1),Vmicro=1.67 cm^(3)·g^(-1)).Such character endows the obtained adsorbent with ultrahigh adsorption capture performance of VOCs specific to benzene(16.58 mmol·g^(-1))and toluene(15.50 mmol·g^(-1),far beyond traditional zeolite and activated carbon even MOFs materials.The structural expression characters were accurately correlated with excellent adsorption efficiency of VOCs by studying synthetic factor-controlling comparative samples.Ulteriorly,adsorption selectivity prediction at different relative humidity was demonstrated through DIH(difference of the isosteric heats),exceedingly highlighting great superiority(nearly sixfold)in selective adsorption of toluene compared to volatile benzene.Our findings provide the possibility for practical industrial application and fabrication of waste biomass-derived outstanding biochar adsorbent in the environmental treatment of threatening VOCs pollutants.
文摘SiGe SOI p-MOSFET在高频、高速、低功耗、抗辐射方面具有极大的优势。但二氧化硅埋层较低的热导率以及SiGe材料较低的热稳定性,使器件内部自加热效应的减弱或消除成为提高器件温度特性的关键因素。对应变SiGe SOI p-MOSFET温度特性机理进行研究,给出了三种缓解MOS-FET器件内部自加热效应的结构,并对其效果进行对比分析。结果表明:DSOI结构不适宜于低压全耗尽型SOI器件;Si3N4-DSOI结构对自加热的改善幅度较小;Si3N4埋层结构效果最好,尤其在低温领域改善更为明显。