The energy-momentum distributions of Einstein's simplest static geometrical model for an isotropic and homogeneous universe are evaluated. For this purpose, Einstein, Bergmann-Thomson, Landau-Lifshitz (LL), Moller ...The energy-momentum distributions of Einstein's simplest static geometrical model for an isotropic and homogeneous universe are evaluated. For this purpose, Einstein, Bergmann-Thomson, Landau-Lifshitz (LL), Moller and Papapetrou energy-momentum complexes are used in general relativity. While Einstein and Bergmann-Thomson complexes give exactly the same results, LL and Papapetrou energy-momentum complexes do not provide the same energy densities. The Moller energy-momentum density is found to be zero everywhere in Einstein's universe. Also, several spacetimes are the limiting cases considered here.展开更多
Using nonlinear electrodynamics coupled to teleparallel theory of gravity, regular charged spherically symmetric solutions are obtained. The nonlinear theory is reduced to the Maxwell one in the weak limit and the sol...Using nonlinear electrodynamics coupled to teleparallel theory of gravity, regular charged spherically symmetric solutions are obtained. The nonlinear theory is reduced to the Maxwell one in the weak limit and the solutions correspond to charged spacetimes. One of the obtained solutions contains an arbitrary function which we call general solution since we can generate from it the other solutions. The metric associated with these spacetimes is the same, i.e., regular charged static spherically symmetric black hole. In calculating the energy content of the general solution using the gravitational energy momentum within the framework of the teleparallel geometry, we find that the resulting form depends on the arbitrary function. Using the regularized expression of the gravitational energy-momentum we obtain the value of energy.展开更多
文摘The energy-momentum distributions of Einstein's simplest static geometrical model for an isotropic and homogeneous universe are evaluated. For this purpose, Einstein, Bergmann-Thomson, Landau-Lifshitz (LL), Moller and Papapetrou energy-momentum complexes are used in general relativity. While Einstein and Bergmann-Thomson complexes give exactly the same results, LL and Papapetrou energy-momentum complexes do not provide the same energy densities. The Moller energy-momentum density is found to be zero everywhere in Einstein's universe. Also, several spacetimes are the limiting cases considered here.
文摘Using nonlinear electrodynamics coupled to teleparallel theory of gravity, regular charged spherically symmetric solutions are obtained. The nonlinear theory is reduced to the Maxwell one in the weak limit and the solutions correspond to charged spacetimes. One of the obtained solutions contains an arbitrary function which we call general solution since we can generate from it the other solutions. The metric associated with these spacetimes is the same, i.e., regular charged static spherically symmetric black hole. In calculating the energy content of the general solution using the gravitational energy momentum within the framework of the teleparallel geometry, we find that the resulting form depends on the arbitrary function. Using the regularized expression of the gravitational energy-momentum we obtain the value of energy.