A great deal of Mesozoic hypobatholithic granites and hypabyssal porphyries develop in the Qinling Mountains. The former has long been regarded as transformation type (or S-type), and the latter associated with Mo-min...A great deal of Mesozoic hypobatholithic granites and hypabyssal porphyries develop in the Qinling Mountains. The former has long been regarded as transformation type (or S-type), and the latter associated with Mo-mineralization regarded as syntexis type (or l-type) granitoids. Statistics show that Sr, andδ18O of hypabyssal porphyries respectively range from 0.705 to 0.714, and from 7.2‰ to 12.1‰, agreeing with those of hypobatholithes (Sr1=0.705-0.710, δ18O = 6.1‰-10.4‰), which indicates that they share similar material sources and petrogenic mechanism. Based on analysis of lithological, mineralogical and geochemical characteristics of these granitoids and on study of their petrogenic tectonic background and regional geophysical data, we argue that both the shallow-seated porphyries and deep-seated batholithes were the products of Mesozoic collision between South China and North China paleocontinents. Subsequently, all these granti-toids should be attributed to collision type.展开更多
The Forkhead box O(FoxO) family has recently been highlighted as an important transcriptional regulator of crucial proteins associated with the many diverse functions of cells. So far, FoxO1, FoxO3 a, FoxO4 and FoxO6 ...The Forkhead box O(FoxO) family has recently been highlighted as an important transcriptional regulator of crucial proteins associated with the many diverse functions of cells. So far, FoxO1, FoxO3 a, FoxO4 and FoxO6 proteins have been identified in humans. Although each FoxO family member has its own role, unlike the other FoxO families, FoxO3 a has been extensively studied because of its rather unique and pivotal regulation of cell proliferation, apoptosis, metabolism, stress management and longevity. FoxO3 a alteration is closely linked to the progression of several types of cancers, fibrosis and other types of diseases. In this review, we will examine the function of FoxO3 a in disease progression and also explore FoxO3a's regulatory mechanisms. We will also discuss FoxO3 a as a potential target for the treatment of several types of disease.展开更多
In this paper, a substrate removing technique in a silicon Mach–Zehnder modulator(MZM) is proposed and demonstrated to improve modulation bandwidth. Based on the novel and optimized traveling wave electrodes,the elec...In this paper, a substrate removing technique in a silicon Mach–Zehnder modulator(MZM) is proposed and demonstrated to improve modulation bandwidth. Based on the novel and optimized traveling wave electrodes,the electrode transmission loss is reduced, and the electro-optical group index and 50 Ω impedance matching are improved, simultaneously. A 2 mm long substrate removed silicon MZM with the measured and extrapolated 3 dB electro-optical bandwidth of >50 GHz and 60 GHz at the-8 V bias voltage is designed and fabricated.Open optical eye diagrams of up to 90 GBaud∕s NRZ and 56 GBaud∕s four-level pulse amplitude modulation(PAM-4) are experimentally obtained without additional optical or digital compensations. Based on this silicon MZM, the performance in a short-reach transmission system is further investigated. Single-lane 112 Gb∕s and 128 Gb∕s transmissions over different distances of 1 km, 2 km, and 10 km are experimentally achieved based on this high-speed silicon MZM.展开更多
Free fatty acids are known to play a key role in promoting loss of insulin sensitivity in type 2 diabetes mellitus but the underlying mechanism is still unclear.It has been postulated that an increase in the intracell...Free fatty acids are known to play a key role in promoting loss of insulin sensitivity in type 2 diabetes mellitus but the underlying mechanism is still unclear.It has been postulated that an increase in the intracellular concentration of fatty acid metabolites activates a serine kinase cascade,which leads to defects in insu-lin signaling downstream to the insulin receptor.In addition,the complex network of adipokines released from adipose tissue modulates the response of tissues to insulin.Among the many molecules involved in the intracellular processing of the signal provided by insulin,the insulin receptor substrate-2,the protein kinase B and the forkhead transcription factor Foxo 1a are of particular interest,as recent data has provided strong evidence that dysfunction of these proteins results in insulin resistance in vivo.Recently,studies have revealed that phosphoinositidedependent kinase 1-independent phosphorylation of protein kinase Cε causes a reduction in insulin receptor gene expression.Additionally,it has been suggested that mitochondrial dysfunction triggers activation of several serine kinases,and weakens insulin signal transduction.Thus,in this review,the current developments in understanding the pathophysiological processes of insulin resistance in type 2 diabetes have been summarized.In addition,this study provides potential new targets for the treatment and prevention of type 2 diabetes.展开更多
文摘A great deal of Mesozoic hypobatholithic granites and hypabyssal porphyries develop in the Qinling Mountains. The former has long been regarded as transformation type (or S-type), and the latter associated with Mo-mineralization regarded as syntexis type (or l-type) granitoids. Statistics show that Sr, andδ18O of hypabyssal porphyries respectively range from 0.705 to 0.714, and from 7.2‰ to 12.1‰, agreeing with those of hypobatholithes (Sr1=0.705-0.710, δ18O = 6.1‰-10.4‰), which indicates that they share similar material sources and petrogenic mechanism. Based on analysis of lithological, mineralogical and geochemical characteristics of these granitoids and on study of their petrogenic tectonic background and regional geophysical data, we argue that both the shallow-seated porphyries and deep-seated batholithes were the products of Mesozoic collision between South China and North China paleocontinents. Subsequently, all these granti-toids should be attributed to collision type.
基金Supported by the National Institutes of Health R01 HL 114662 to Nho R
文摘The Forkhead box O(FoxO) family has recently been highlighted as an important transcriptional regulator of crucial proteins associated with the many diverse functions of cells. So far, FoxO1, FoxO3 a, FoxO4 and FoxO6 proteins have been identified in humans. Although each FoxO family member has its own role, unlike the other FoxO families, FoxO3 a has been extensively studied because of its rather unique and pivotal regulation of cell proliferation, apoptosis, metabolism, stress management and longevity. FoxO3 a alteration is closely linked to the progression of several types of cancers, fibrosis and other types of diseases. In this review, we will examine the function of FoxO3 a in disease progression and also explore FoxO3a's regulatory mechanisms. We will also discuss FoxO3 a as a potential target for the treatment of several types of disease.
文摘In this paper, a substrate removing technique in a silicon Mach–Zehnder modulator(MZM) is proposed and demonstrated to improve modulation bandwidth. Based on the novel and optimized traveling wave electrodes,the electrode transmission loss is reduced, and the electro-optical group index and 50 Ω impedance matching are improved, simultaneously. A 2 mm long substrate removed silicon MZM with the measured and extrapolated 3 dB electro-optical bandwidth of >50 GHz and 60 GHz at the-8 V bias voltage is designed and fabricated.Open optical eye diagrams of up to 90 GBaud∕s NRZ and 56 GBaud∕s four-level pulse amplitude modulation(PAM-4) are experimentally obtained without additional optical or digital compensations. Based on this silicon MZM, the performance in a short-reach transmission system is further investigated. Single-lane 112 Gb∕s and 128 Gb∕s transmissions over different distances of 1 km, 2 km, and 10 km are experimentally achieved based on this high-speed silicon MZM.
文摘Free fatty acids are known to play a key role in promoting loss of insulin sensitivity in type 2 diabetes mellitus but the underlying mechanism is still unclear.It has been postulated that an increase in the intracellular concentration of fatty acid metabolites activates a serine kinase cascade,which leads to defects in insu-lin signaling downstream to the insulin receptor.In addition,the complex network of adipokines released from adipose tissue modulates the response of tissues to insulin.Among the many molecules involved in the intracellular processing of the signal provided by insulin,the insulin receptor substrate-2,the protein kinase B and the forkhead transcription factor Foxo 1a are of particular interest,as recent data has provided strong evidence that dysfunction of these proteins results in insulin resistance in vivo.Recently,studies have revealed that phosphoinositidedependent kinase 1-independent phosphorylation of protein kinase Cε causes a reduction in insulin receptor gene expression.Additionally,it has been suggested that mitochondrial dysfunction triggers activation of several serine kinases,and weakens insulin signal transduction.Thus,in this review,the current developments in understanding the pathophysiological processes of insulin resistance in type 2 diabetes have been summarized.In addition,this study provides potential new targets for the treatment and prevention of type 2 diabetes.