期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
针对非平衡警情数据改进的K-Means-Boosting-BP模型
被引量:
4
1
作者
李卫红
童昊昕
《中国图象图形学报》
CSCD
北大核心
2017年第9期1314-1324,共11页
目的掌握警情的时空分布规律,通过机器学习算法建立警情时空预测模型,制定科学的警务防控方案,有效抑制犯罪的发生,是犯罪地理研究的重点。已有研究表明,警情时空分布多集中在中心城区或居民密集区,在时空上属于非平衡数据,这种数据的...
目的掌握警情的时空分布规律,通过机器学习算法建立警情时空预测模型,制定科学的警务防控方案,有效抑制犯罪的发生,是犯罪地理研究的重点。已有研究表明,警情时空分布多集中在中心城区或居民密集区,在时空上属于非平衡数据,这种数据的非平衡性通常导致在该数据上训练的模型成为弱学习器,预测精度较低。为解决这种非平衡数据的回归问题,提出一种基于KMeans均值聚类的Boosting算法。方法该算法以Boosting集成学习算法为基础,应用GA-BP神经网络生成基分类器,借助KMeans均值聚类算法进行基分类器的集成,从而实现将弱学习器提升为强学习器的目标。结果与常用的解决非平衡数据回归问题的Synthetic Minority Oversampling Technique Boosting算法,简称SMOTEBoosting算法相比,该算法具有两方面的优势:1)在降低非平衡数据中少数类均方误差的同时也降低了数据的整体均方误差,SMOTEBoosting算法的整体均方误差为2.14E-04,KMeans-Boosting算法的整体均方误差达到9.85E-05;2)更好地平衡了少数类样本识别的准确率和召回率,KMeans-Boosting算法的召回率约等于52%,SMOTEBoosting算法的召回率约等于91%;但KMeans-Boosting算法的准确率等于85%,远高于SMOTEBoosting算法的19%。结论 KMeans-Boosting算法能够显著的降低非平衡数据的整体均方误差,提高少数类样本识别的准确率和召回率,是一种有效地解决非平衡数据回归问题和分类问题的算法,可以推广至其他需要处理非平衡数据的领域中。
展开更多
关键词
非平衡数据
synthetic
minority
oversampling
technique
算法
boosting
算法
KMeans聚类算法
警情时空预测
原文传递
题名
针对非平衡警情数据改进的K-Means-Boosting-BP模型
被引量:
4
1
作者
李卫红
童昊昕
机构
华南师范大学
广东精一规划信息科技股份有限公司
出处
《中国图象图形学报》
CSCD
北大核心
2017年第9期1314-1324,共11页
基金
公安部科技强警基础工作专项项目(2016GABJC47)
文摘
目的掌握警情的时空分布规律,通过机器学习算法建立警情时空预测模型,制定科学的警务防控方案,有效抑制犯罪的发生,是犯罪地理研究的重点。已有研究表明,警情时空分布多集中在中心城区或居民密集区,在时空上属于非平衡数据,这种数据的非平衡性通常导致在该数据上训练的模型成为弱学习器,预测精度较低。为解决这种非平衡数据的回归问题,提出一种基于KMeans均值聚类的Boosting算法。方法该算法以Boosting集成学习算法为基础,应用GA-BP神经网络生成基分类器,借助KMeans均值聚类算法进行基分类器的集成,从而实现将弱学习器提升为强学习器的目标。结果与常用的解决非平衡数据回归问题的Synthetic Minority Oversampling Technique Boosting算法,简称SMOTEBoosting算法相比,该算法具有两方面的优势:1)在降低非平衡数据中少数类均方误差的同时也降低了数据的整体均方误差,SMOTEBoosting算法的整体均方误差为2.14E-04,KMeans-Boosting算法的整体均方误差达到9.85E-05;2)更好地平衡了少数类样本识别的准确率和召回率,KMeans-Boosting算法的召回率约等于52%,SMOTEBoosting算法的召回率约等于91%;但KMeans-Boosting算法的准确率等于85%,远高于SMOTEBoosting算法的19%。结论 KMeans-Boosting算法能够显著的降低非平衡数据的整体均方误差,提高少数类样本识别的准确率和召回率,是一种有效地解决非平衡数据回归问题和分类问题的算法,可以推广至其他需要处理非平衡数据的领域中。
关键词
非平衡数据
synthetic
minority
oversampling
technique
算法
boosting
算法
KMeans聚类算法
警情时空预测
Keywords
unbalanced
data
synthetic
minority
oversampling
technique
boosting
algorithm
boosting
algorithm
K-means
clustering
algorithm
spatio-temporal
prediction
of
police
intelligence
分类号
TP701 [自动化与计算机技术—检测技术与自动化装置]
原文传递
题名
作者
出处
发文年
被引量
操作
1
针对非平衡警情数据改进的K-Means-Boosting-BP模型
李卫红
童昊昕
《中国图象图形学报》
CSCD
北大核心
2017
4
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部