We propose a new narrowband speech watermarking scheme by replacing part of the speech with a scaled and spectrally shaped hidden signal. Theoretically, it is proved that if a small amount of host speech is modified, ...We propose a new narrowband speech watermarking scheme by replacing part of the speech with a scaled and spectrally shaped hidden signal. Theoretically, it is proved that if a small amount of host speech is modified, then not only an ideal channel model for hidden communication can be established, but also high imperceptibility and good intelligibility can be achieved. Furthermore, a practical system implementation is proposed. At the embedder, the power normalization criterion is first imposed on a passband watermark signal by forcing its power level to be the same as the original passband excitation of the cover speech, and a synthesis filter is then used to spectrally shape the scaled watermark signal. At the extractor, a bandpass filter is first used to get rid of the out-of-band signal, and an analysis filter is then employed to compensate for the distortion introduced by the synthesis filter. Experimental results show that the data rate is as high as 400 bits/s with better bandwidth efficiency, and good imperceptibility is achieved. Moreover, this method is robust against various attacks existing in real applications.展开更多
基金Project supported by the National Natural Science Foundation of China(No.61571110)
文摘We propose a new narrowband speech watermarking scheme by replacing part of the speech with a scaled and spectrally shaped hidden signal. Theoretically, it is proved that if a small amount of host speech is modified, then not only an ideal channel model for hidden communication can be established, but also high imperceptibility and good intelligibility can be achieved. Furthermore, a practical system implementation is proposed. At the embedder, the power normalization criterion is first imposed on a passband watermark signal by forcing its power level to be the same as the original passband excitation of the cover speech, and a synthesis filter is then used to spectrally shape the scaled watermark signal. At the extractor, a bandpass filter is first used to get rid of the out-of-band signal, and an analysis filter is then employed to compensate for the distortion introduced by the synthesis filter. Experimental results show that the data rate is as high as 400 bits/s with better bandwidth efficiency, and good imperceptibility is achieved. Moreover, this method is robust against various attacks existing in real applications.