This paper concerns about the episodes of PM2.5 pollution that frequently occur in China in winter months.The severity of PM2.5 pollution is strongly dependent on the synoptic-scale atmospheric conditions.We combined ...This paper concerns about the episodes of PM2.5 pollution that frequently occur in China in winter months.The severity of PM2.5 pollution is strongly dependent on the synoptic-scale atmospheric conditions.We combined PM2.5 concentration data and meteorological data with the Hybrid Single Particle Lagrangian Integrated Trajectory model(HYSPLIT4)to investigate the dominant synoptic patterns and their relationships with PM2.5 pollution over the Beijing–Tianjin–Hebei(BTH)and Yangtze River Delta(YRD)regions in the winters of 2014–17.The transport of PM2.5 from the BTH to YRD regions was examined by using cluster analysis and HYSPLIT4.It is found that the level of PM2.5 pollution over the BTH region was higher than that over the YRD region.The concentration of PM2.5 in the atmosphere was more closely related to meteorological factors over the BTH region.The episodes of PM2.5 pollution over the BTH region in winter were related to weather patterns such as the rear of a high-pressure system approaching the sea,a high-pressure field,a saddle pressure field,and the leading edge of a cold front.By contrast,PM2.5 pollution episodes in the YRD region in winter were mainly associated with the external transport of cold air,a high-pressure field,and a uniform pressure field.Cluster analysis shows that the trajectories of PM2.5 were significantly different under different weather patterns.PM2.5 would be transported from the BTH to the YRD within 48 h when the PM2.5 pollution episodes were associated with three different kinds of weather patterns:the rear of a highpressure system approaching the sea,the high-pressure field,and the leading edge of a cold front over the BTH region.This suggests a possible method to predict PM2.5 pollution episodes based on synoptic-scale patterns.展开更多
The fog occurs frequently over the Yellow Sea in spring(April–May), a climatical period of Asian monsoon transition. A comprehensive survey of the characteristic weather pattern and the air-sea condition is provide...The fog occurs frequently over the Yellow Sea in spring(April–May), a climatical period of Asian monsoon transition. A comprehensive survey of the characteristic weather pattern and the air-sea condition is provided associated with the fog for the period of 1960–2006. The sea fog is categorized by airflow pathways of backward trajectory cluster analysis with the surface observations derived from international comprehensive oceanatmosphere dataset(I_COADS) I_COADS datasets and contemporaneous wind fields from the National Centers for Environmental Prediction(NCEP)/National Center for Atmospheric Research(NCAR) reanalysis. On the basis of the airflow paths, the large-scale lower-tropospheric circulation patterns and the associated surface divergence,the distribution of a vertical humidity, the horizontal water vapor transportation and the air-sea temperature difference are investigated and the major findings are summarized as follows.(1) Four primary clusters of the airflow paths that lead to spring sea fog formation are identified. They are originated from the northwest, east,southeast and southwest of the Yellow Sea, respectively.(2) Springtime Yellow Sea fog occurs under two typical weather patterns: the Yellow Sea high(YSH) and cyclone and anticyclone couplet(CAC). Each pattern appears by about equal chance in April but the YSH occurrence drops to around one third and the CAC rises to around two third of chance in May.(3) The common feature in the two types of synoptic conditions is that surface divergence center is located over the Yellow Sea.(4) For the YSH type of fog, water vapor comes mainly from local evaporation with a well-defined dry layer present in the lower atmosphere; for the CAC type of fog, however, water vapor comes mainly from areas outside the Yellow Sea with a thick surface layer of high humidity.(5) With the differences in weather patterns and its associated vertical distribution of the humidity and the transportation of water vapor, there ar展开更多
基金Supported by the National Natural Science Foundation of China(91744311 and 91737101)
文摘This paper concerns about the episodes of PM2.5 pollution that frequently occur in China in winter months.The severity of PM2.5 pollution is strongly dependent on the synoptic-scale atmospheric conditions.We combined PM2.5 concentration data and meteorological data with the Hybrid Single Particle Lagrangian Integrated Trajectory model(HYSPLIT4)to investigate the dominant synoptic patterns and their relationships with PM2.5 pollution over the Beijing–Tianjin–Hebei(BTH)and Yangtze River Delta(YRD)regions in the winters of 2014–17.The transport of PM2.5 from the BTH to YRD regions was examined by using cluster analysis and HYSPLIT4.It is found that the level of PM2.5 pollution over the BTH region was higher than that over the YRD region.The concentration of PM2.5 in the atmosphere was more closely related to meteorological factors over the BTH region.The episodes of PM2.5 pollution over the BTH region in winter were related to weather patterns such as the rear of a high-pressure system approaching the sea,a high-pressure field,a saddle pressure field,and the leading edge of a cold front.By contrast,PM2.5 pollution episodes in the YRD region in winter were mainly associated with the external transport of cold air,a high-pressure field,and a uniform pressure field.Cluster analysis shows that the trajectories of PM2.5 were significantly different under different weather patterns.PM2.5 would be transported from the BTH to the YRD within 48 h when the PM2.5 pollution episodes were associated with three different kinds of weather patterns:the rear of a highpressure system approaching the sea,the high-pressure field,and the leading edge of a cold front over the BTH region.This suggests a possible method to predict PM2.5 pollution episodes based on synoptic-scale patterns.
基金The National Natural Science Foundation of China under contract No.41275025the Special Fund for Strategic Pilot Technology of Chinese Academy of Sciences under contract No.XDA11010403the National Key Basic Research Program(973 Progrom)of China under controut No.2014CB953903
文摘The fog occurs frequently over the Yellow Sea in spring(April–May), a climatical period of Asian monsoon transition. A comprehensive survey of the characteristic weather pattern and the air-sea condition is provided associated with the fog for the period of 1960–2006. The sea fog is categorized by airflow pathways of backward trajectory cluster analysis with the surface observations derived from international comprehensive oceanatmosphere dataset(I_COADS) I_COADS datasets and contemporaneous wind fields from the National Centers for Environmental Prediction(NCEP)/National Center for Atmospheric Research(NCAR) reanalysis. On the basis of the airflow paths, the large-scale lower-tropospheric circulation patterns and the associated surface divergence,the distribution of a vertical humidity, the horizontal water vapor transportation and the air-sea temperature difference are investigated and the major findings are summarized as follows.(1) Four primary clusters of the airflow paths that lead to spring sea fog formation are identified. They are originated from the northwest, east,southeast and southwest of the Yellow Sea, respectively.(2) Springtime Yellow Sea fog occurs under two typical weather patterns: the Yellow Sea high(YSH) and cyclone and anticyclone couplet(CAC). Each pattern appears by about equal chance in April but the YSH occurrence drops to around one third and the CAC rises to around two third of chance in May.(3) The common feature in the two types of synoptic conditions is that surface divergence center is located over the Yellow Sea.(4) For the YSH type of fog, water vapor comes mainly from local evaporation with a well-defined dry layer present in the lower atmosphere; for the CAC type of fog, however, water vapor comes mainly from areas outside the Yellow Sea with a thick surface layer of high humidity.(5) With the differences in weather patterns and its associated vertical distribution of the humidity and the transportation of water vapor, there ar