Let G be a finite group. If |N<sub>G</sub>(R<sub>1</sub>)|=|N<sub>L<sub>n</sub></sub>(q)(R<sub>2</sub>)| for every prime r, where R<sub>1</sub...Let G be a finite group. If |N<sub>G</sub>(R<sub>1</sub>)|=|N<sub>L<sub>n</sub></sub>(q)(R<sub>2</sub>)| for every prime r, where R<sub>1</sub>∈Syl<sub>r</sub> G and R<sub>2</sub>∈Syl<sub>r</sub>(L<sub>n</sub>(q)), then G≌L<sub>n</sub>(q).展开更多
文摘Let G be a finite group. If |N<sub>G</sub>(R<sub>1</sub>)|=|N<sub>L<sub>n</sub></sub>(q)(R<sub>2</sub>)| for every prime r, where R<sub>1</sub>∈Syl<sub>r</sub> G and R<sub>2</sub>∈Syl<sub>r</sub>(L<sub>n</sub>(q)), then G≌L<sub>n</sub>(q).