Seawater intrusion has become one of serious environmental problems in coastal areas. During the replacement of saline water by fresh water in the aquifers, in-situ clay could be released, transport and deposit in the...Seawater intrusion has become one of serious environmental problems in coastal areas. During the replacement of saline water by fresh water in the aquifers, in-situ clay could be released, transport and deposit in the porous media due to the change of hydrodynamic and geochemical conditions, which resulted in the increasing of particle size, plugging of pores and reduction of the permeability. Batch experiments and sand column experiments were explored to study the relationships between the flocculation of in-situ clay and geochemical conditions, by changing ionic strength and ionic type of clay suspension. Column outflow was analyzed for suspended particles and electrical conductivity. The total percentage of colloid straining and interception distribution in porous media was calculated. The results indicate that porous media had an effect on the interception of clay colloid particles with about 10 percent clay colloids captured due to the rough surfaces and spatial structure of porous media. Ionic strength played a key role on the permeability reductions. The higher ionic strength is, the greater the amount of colloidal particles trapped. Ionic type also had a significant effect on the interception of clay colloid particles. Ripening was the main mechanism for the interception within porous media when the bulk solution was potassium chloride while blocking happened when the bulk solution was sodium chloride. The distribution of clay colloids in porous media was heterogeneous. The closer to the sand column inlet was the less interception of clay colloids was. The results can provide the scientific basis for preventing the water sensitivity during the process of salty aquifer restoration.展开更多
基金Funding for this research was provided by the Natural Science Foundation of Shandong, China, under Grant No. ZR2014DL005the Key Laboratory of Marine Ecological Environment and Disaster Prevention and Mitigation of Shandong Province, under Grant No. 201510+1 种基金Funding for this research was also provided by the National Natural Science Foundation of China (No. 40902066)Key Project of Science and Technology of China (No. 2013ZX07202-007)
文摘Seawater intrusion has become one of serious environmental problems in coastal areas. During the replacement of saline water by fresh water in the aquifers, in-situ clay could be released, transport and deposit in the porous media due to the change of hydrodynamic and geochemical conditions, which resulted in the increasing of particle size, plugging of pores and reduction of the permeability. Batch experiments and sand column experiments were explored to study the relationships between the flocculation of in-situ clay and geochemical conditions, by changing ionic strength and ionic type of clay suspension. Column outflow was analyzed for suspended particles and electrical conductivity. The total percentage of colloid straining and interception distribution in porous media was calculated. The results indicate that porous media had an effect on the interception of clay colloid particles with about 10 percent clay colloids captured due to the rough surfaces and spatial structure of porous media. Ionic strength played a key role on the permeability reductions. The higher ionic strength is, the greater the amount of colloidal particles trapped. Ionic type also had a significant effect on the interception of clay colloid particles. Ripening was the main mechanism for the interception within porous media when the bulk solution was potassium chloride while blocking happened when the bulk solution was sodium chloride. The distribution of clay colloids in porous media was heterogeneous. The closer to the sand column inlet was the less interception of clay colloids was. The results can provide the scientific basis for preventing the water sensitivity during the process of salty aquifer restoration.