The vertical structure of the crustal block of the Songliao Basin can be divided into upper, middle and low Earth's crust according to density. There is an about 3-km-thick low density interval between the upper c...The vertical structure of the crustal block of the Songliao Basin can be divided into upper, middle and low Earth's crust according to density. There is an about 3-km-thick low density interval between the upper crust and the middle crust. This interval may be a magma chamber accumulated in crust by 'fluid phase' which is precipitated and separated from upper mantle meltmass. The abiogenetic natural gas, other gaseous mass and hydrothermal fluids are provided to the Songliao rifted basin through crustal faults and natural earthquakes. This is a basic condition to form an abiogenetic gas reservoir in the Songliao Basin. On both flanks of the upper crust (or named basin basement) fault there are structural traps in and above the basement and unconformity surface or lateral extended sand, which contains communicated pores, as migration pathway and natural gas reservoir; up to gas reservoirs there is shale as enclosed cap rock, and the suitable arrangement of these conditions is the basic features of abiogenetic gas reservoir.展开更多
The latest advancement of CO2 flooding and sequestration theory and technology in China is systematically described, and the future development direction is put forward. Based on the geological characteristics of cont...The latest advancement of CO2 flooding and sequestration theory and technology in China is systematically described, and the future development direction is put forward. Based on the geological characteristics of continental reservoirs, five theories and key technologies have been developed:(1) Enriched the understandings about the mass transfer characteristics of components between CO2 and crude oil in continental reservoirs, micro-flooding mechanism and sequestration mechanism of different geological bodies.(2) Established the design method of reservoir engineering parameters, injection-production control technology and development effect evaluation technology of CO2 flooding, etc.(3) Developed a series of production engineering technologies such as separated layer CO2 injection technology, high efficiency lifting technology, on-line wellbore corrosion monitoring and protection technology.(4) Innovated a series of surface engineering technology including CO2 capture technology, pipeline CO2 transportation, CO2 surface injection, and production gas circulation injection, etc.(5) Formed a series of supporting technologies including monitoring, and safety and environmental protection evaluation of CO2 flooding reservoir. On this basis, the technological development directions in the future have been put forward:(1) Breakthrough in low-cost CO2 capture technology to provide cheap CO2 gas source;(2) Improve the miscibility technology between CO2 and crude oil to enhance oil displacement efficiency;(3) Improve CO2 sweeping volume;(4) Develop more effective lifting tools and technologies;(5) Strengthen the research of basic theory and key technology of CO2 storage monitoring. CO2 flooding and sequestration in the Jilin Oilfield shows that this technology has broad application prospects in China.展开更多
基金Project supported by the National Natural Science Foundation of China
文摘The vertical structure of the crustal block of the Songliao Basin can be divided into upper, middle and low Earth's crust according to density. There is an about 3-km-thick low density interval between the upper crust and the middle crust. This interval may be a magma chamber accumulated in crust by 'fluid phase' which is precipitated and separated from upper mantle meltmass. The abiogenetic natural gas, other gaseous mass and hydrothermal fluids are provided to the Songliao rifted basin through crustal faults and natural earthquakes. This is a basic condition to form an abiogenetic gas reservoir in the Songliao Basin. On both flanks of the upper crust (or named basin basement) fault there are structural traps in and above the basement and unconformity surface or lateral extended sand, which contains communicated pores, as migration pathway and natural gas reservoir; up to gas reservoirs there is shale as enclosed cap rock, and the suitable arrangement of these conditions is the basic features of abiogenetic gas reservoir.
基金Supported by the China National Science and Technology Major Project(2016ZX05016)
文摘The latest advancement of CO2 flooding and sequestration theory and technology in China is systematically described, and the future development direction is put forward. Based on the geological characteristics of continental reservoirs, five theories and key technologies have been developed:(1) Enriched the understandings about the mass transfer characteristics of components between CO2 and crude oil in continental reservoirs, micro-flooding mechanism and sequestration mechanism of different geological bodies.(2) Established the design method of reservoir engineering parameters, injection-production control technology and development effect evaluation technology of CO2 flooding, etc.(3) Developed a series of production engineering technologies such as separated layer CO2 injection technology, high efficiency lifting technology, on-line wellbore corrosion monitoring and protection technology.(4) Innovated a series of surface engineering technology including CO2 capture technology, pipeline CO2 transportation, CO2 surface injection, and production gas circulation injection, etc.(5) Formed a series of supporting technologies including monitoring, and safety and environmental protection evaluation of CO2 flooding reservoir. On this basis, the technological development directions in the future have been put forward:(1) Breakthrough in low-cost CO2 capture technology to provide cheap CO2 gas source;(2) Improve the miscibility technology between CO2 and crude oil to enhance oil displacement efficiency;(3) Improve CO2 sweeping volume;(4) Develop more effective lifting tools and technologies;(5) Strengthen the research of basic theory and key technology of CO2 storage monitoring. CO2 flooding and sequestration in the Jilin Oilfield shows that this technology has broad application prospects in China.