An ultrafine-grained(UFG) Mg-13Zn-1.55 Y alloy(ZW132) with a high volume fraction(7.4%) of icosahedral phase(I-phase, Mg;Zn;Y) particles was prepared by applying high-ratio differential speed rolling(HRDSR) ...An ultrafine-grained(UFG) Mg-13Zn-1.55 Y alloy(ZW132) with a high volume fraction(7.4%) of icosahedral phase(I-phase, Mg;Zn;Y) particles was prepared by applying high-ratio differential speed rolling(HRDSR) on the cast microstructure following homogenization. The alloy exhibited excellent superplasticity at low temperatures(tensile elongations of 455% and 1021% 473 K-10;s;and 523 K-10;s;,respectively). Compared with UFG Mg-9.25Zn-1.66 Y alloy(ZW92) with a lower volume fraction of I-phase particles(4.1%), which was prepared using the same processing routes, the UFG ZW132 alloy exhibited a higher thermal stability of grain size. Rapid grain coarsening, however, occurred at temperatures beyond523 K, leading to a loss of superplasticity. The high-temperature deformation behavior of the HRDSRprocessed ZW132 alloy could be well described assuming that the mechanisms of grain boundary sliding and dislocation climb creep competed with each other and considering that the grain-size was largely increased by accelerated grain growth at the temperatures beyond 523 K.展开更多
基金supported financially by the Mid-Career Researcher Program through the National Research Foundation of Korea(2016) funded by the Ministry of Education, Science and Technology (2016R1A2B4015481)
文摘An ultrafine-grained(UFG) Mg-13Zn-1.55 Y alloy(ZW132) with a high volume fraction(7.4%) of icosahedral phase(I-phase, Mg;Zn;Y) particles was prepared by applying high-ratio differential speed rolling(HRDSR) on the cast microstructure following homogenization. The alloy exhibited excellent superplasticity at low temperatures(tensile elongations of 455% and 1021% 473 K-10;s;and 523 K-10;s;,respectively). Compared with UFG Mg-9.25Zn-1.66 Y alloy(ZW92) with a lower volume fraction of I-phase particles(4.1%), which was prepared using the same processing routes, the UFG ZW132 alloy exhibited a higher thermal stability of grain size. Rapid grain coarsening, however, occurred at temperatures beyond523 K, leading to a loss of superplasticity. The high-temperature deformation behavior of the HRDSRprocessed ZW132 alloy could be well described assuming that the mechanisms of grain boundary sliding and dislocation climb creep competed with each other and considering that the grain-size was largely increased by accelerated grain growth at the temperatures beyond 523 K.