Despite of the higher energy density and inexpensive characteristics,commercialization of layered oxide cathodes for sodium ion batteries(SIBs)is limited due to the lack of structural stability at the high voltage.Her...Despite of the higher energy density and inexpensive characteristics,commercialization of layered oxide cathodes for sodium ion batteries(SIBs)is limited due to the lack of structural stability at the high voltage.Herein,the one-step electrochemical in-situ Li doping and LiF coating are successfully achieved to obtain an advanced Na0.79Lix[Li_(0.13)Ni_(0.20)Mn_(0.67)]O_(2)@LiF(NaLi-LNM@LiF)cathode with superlattice structure.The results demonstrate that the Li^(+)doped into the alkali metal layer by electrochemical cycling act as"pillars"in the form of Li-Li dimers to stabilize the layered structure.The supplementation of Li to the superlattice structure inhibits the dissolution of transition metal ions and lattice mismatch.Furthermore,the in-situ LiF coating restrains side reactions,reduces surface cracks,and greatly improves the cycling stability.The electrochemical in-situ modification strategy significantly enhances the electrochemical performance of the half-cell.The NaLi-LNM@LiF exhibits high reversible specific capacity(170.6 m A h g^(-1)at 0.05 C),outstanding capacity retention(92.65%after 200 cycles at 0.5 C)and excellent rate performance(80 mA h g^(-1)at 7 C)in a wide voltage range of 1.5-4.5 V.This novel method of in-situ modification by electrochemical process will provide a guidance for the rational design of cathode materials for SIBs.展开更多
The domain wall structure of ferroelectric/paraelectric superlattices can be much more complex due to the influence of the superlattice stacking structure,the in-plane strain induced by the substrate and environmental...The domain wall structure of ferroelectric/paraelectric superlattices can be much more complex due to the influence of the superlattice stacking structure,the in-plane strain induced by the substrate and environmental temperature.In this study,we employed a phase field model to investigate the domain wall state of the SrTiO_(3)/BaTiO_(3) superlattice structure.The domain wall thickness for the SrTiO_(3)/BaTiO_(3) layer was measured using a hyperbolic function.Based on the simulation results,here,we show a domain wall state diagram to distinguish the hard and soft domain states.The polarization profiles across hard/soft domain walls were illustrated and analyzed.Our simulation results offer a useful concept for the control of the domain wall state in the ferroelectric superlattice.展开更多
Rare earth-Mg-Ni-based alloys with superlattice structures are new generation negative electrode materials for the nickel metal hydride batteries.Among them,the novel AB_(4)-type superlattice structure alloy is suppos...Rare earth-Mg-Ni-based alloys with superlattice structures are new generation negative electrode materials for the nickel metal hydride batteries.Among them,the novel AB_(4)-type superlattice structure alloy is supposed to have superior cycling stability and rate capability.Yet its preparation is hindered by the crucial requirement of temperature and the special composition which is close to the other superlattice structure.Here,we prepare rare earth-Mg-Ni-based alloy and study the phase transformation of alloys to make clear the formation of AB_(4)-type phase.It is found Pr_(5)Co_(19)-type phase is converted from Ce_(5)Co_(19)-type phase and shows good stability at higher temperature compared to the Ce_(5)Co_(19)-type phase in the range of 930-970℃.Afterwards,with further 5℃increasing,AB_(4)-type superlattice structure forms at a temperature of 975℃by consuming Pr_(5)Co_(19)-type phase.In contrast with A_(5)B_(19)-type alloy,AB_(4)-type alloy has superior rate capability owing to the dominant advantages of charge transfer and hydrogen diffusion.Besides,AB_(4)-type alloy shows long lifespan whose capacity retention rates are 89.2%at the 100;cycle and 82.8%at the 200;cycle,respectively.AB_(4)-type alloy delivers 1.53 wt.%hydrogen storage capacity at room temperature and exhibits higher plateau pressure than Pr_(5)Co_(19)-type alloy.The work provides novel AB_(4)-type alloy with preferable electrochemical performance as negative electrode material to inspire the development of nickel metal hydride batteries.展开更多
Based on the phenomenon of curvature-induced doping in graphene we propose a class of Peltier cooling devices, produced by geometrical effects, without gating. We show how a graphene nanorib- bon laid on an array of c...Based on the phenomenon of curvature-induced doping in graphene we propose a class of Peltier cooling devices, produced by geometrical effects, without gating. We show how a graphene nanorib- bon laid on an array of curved nano cylinders can be used to create a targeted and tunable cooling device. Using two different approaches, the Nonequilibrium Green's Function (NEGF) method and experimental inputs, we predict that the cooling kW/cm2, on par with the best known techniques power of such a device can approach the order of using standard superlattice structures. The structure proposed here helps pave the way toward designing graphene electronics which use geometry rather than gating to control devices.展开更多
The rational assembly of quantum dots on two-dimensional(2 D) carbonaceous materials is very promising to produce materials, but remains a challenge. Here, we develop an assembly strategy of growing Na3 V2(PO4)3 quant...The rational assembly of quantum dots on two-dimensional(2 D) carbonaceous materials is very promising to produce materials, but remains a challenge. Here, we develop an assembly strategy of growing Na3 V2(PO4)3 quantum dots with superlattice structure(NVP-QDs-SL) for obtaining precise control of the size, distribution and crystallinity. The multifunctional lignocelluloses(LCs) used as a hard carbon source induce heterogeneous nucleation and confined growth of NVP-QDs-SL, leading to the uniform distribution of NVP-QDs-SL in H/S-doped hard carbon ultra-thin nanosheets(HCS). Detailed electrochemical analysis results from sodium-ion batteries of NVP-QDs-SL show that NVP-QDs-SL could trap the electrons inside HCS, significantly enhancing Na ion storage and transfer kinetics. Compared to the common Na3 V2(PO4)3 nanoparticle cathode, the NVP-QDs-SL/HCS cathode exhibits a high reversible capacity of 149.2 m A h g^-1 at a 0.1 C rate, which is far beyond the theoretical capacity of Na3 V2(PO4)3(117.6 m A h g^-1).At the ultrahigh current rate of 100 C, this cathode still remains a high discharge capacity of 40 m A h g-1.Even after cycling at 20 C over 3000 cycles, an ultrahigh coulombic efficiency close to 100% is still obtained,highlighting its excellent long cycling life, remarkable rate performance and energy density.展开更多
基金financially supported by the National Natural Science Foundation of China(51972023)。
文摘Despite of the higher energy density and inexpensive characteristics,commercialization of layered oxide cathodes for sodium ion batteries(SIBs)is limited due to the lack of structural stability at the high voltage.Herein,the one-step electrochemical in-situ Li doping and LiF coating are successfully achieved to obtain an advanced Na0.79Lix[Li_(0.13)Ni_(0.20)Mn_(0.67)]O_(2)@LiF(NaLi-LNM@LiF)cathode with superlattice structure.The results demonstrate that the Li^(+)doped into the alkali metal layer by electrochemical cycling act as"pillars"in the form of Li-Li dimers to stabilize the layered structure.The supplementation of Li to the superlattice structure inhibits the dissolution of transition metal ions and lattice mismatch.Furthermore,the in-situ LiF coating restrains side reactions,reduces surface cracks,and greatly improves the cycling stability.The electrochemical in-situ modification strategy significantly enhances the electrochemical performance of the half-cell.The NaLi-LNM@LiF exhibits high reversible specific capacity(170.6 m A h g^(-1)at 0.05 C),outstanding capacity retention(92.65%after 200 cycles at 0.5 C)and excellent rate performance(80 mA h g^(-1)at 7 C)in a wide voltage range of 1.5-4.5 V.This novel method of in-situ modification by electrochemical process will provide a guidance for the rational design of cathode materials for SIBs.
基金supported by the Advanced Functional Materials Research and Innovation Group of the Xiamen Institute of Technology(Grant Number KYTD202004).
文摘The domain wall structure of ferroelectric/paraelectric superlattices can be much more complex due to the influence of the superlattice stacking structure,the in-plane strain induced by the substrate and environmental temperature.In this study,we employed a phase field model to investigate the domain wall state of the SrTiO_(3)/BaTiO_(3) superlattice structure.The domain wall thickness for the SrTiO_(3)/BaTiO_(3) layer was measured using a hyperbolic function.Based on the simulation results,here,we show a domain wall state diagram to distinguish the hard and soft domain states.The polarization profiles across hard/soft domain walls were illustrated and analyzed.Our simulation results offer a useful concept for the control of the domain wall state in the ferroelectric superlattice.
基金financially supported by the Natural Science Foundation of Hebei Province(Nos.E2019203414,E2020203081 and E2019203161)the National Natural Science Foundation of China(Nos.51701175 and 51971197)+1 种基金the Innovation Fund for the Graduate Students of Hebei Province(No.CXZZBS2020062)the Doctoral Fund of Yanshan University(No.BL19031)
文摘Rare earth-Mg-Ni-based alloys with superlattice structures are new generation negative electrode materials for the nickel metal hydride batteries.Among them,the novel AB_(4)-type superlattice structure alloy is supposed to have superior cycling stability and rate capability.Yet its preparation is hindered by the crucial requirement of temperature and the special composition which is close to the other superlattice structure.Here,we prepare rare earth-Mg-Ni-based alloy and study the phase transformation of alloys to make clear the formation of AB_(4)-type phase.It is found Pr_(5)Co_(19)-type phase is converted from Ce_(5)Co_(19)-type phase and shows good stability at higher temperature compared to the Ce_(5)Co_(19)-type phase in the range of 930-970℃.Afterwards,with further 5℃increasing,AB_(4)-type superlattice structure forms at a temperature of 975℃by consuming Pr_(5)Co_(19)-type phase.In contrast with A_(5)B_(19)-type alloy,AB_(4)-type alloy has superior rate capability owing to the dominant advantages of charge transfer and hydrogen diffusion.Besides,AB_(4)-type alloy shows long lifespan whose capacity retention rates are 89.2%at the 100;cycle and 82.8%at the 200;cycle,respectively.AB_(4)-type alloy delivers 1.53 wt.%hydrogen storage capacity at room temperature and exhibits higher plateau pressure than Pr_(5)Co_(19)-type alloy.The work provides novel AB_(4)-type alloy with preferable electrochemical performance as negative electrode material to inspire the development of nickel metal hydride batteries.
基金It is a pleasure to thank Y. Chen, E.- A. Kim, and Y. L. Loh for conversations. W. J. Li would like to thank Vinh Quang Diep and Seokmin Hong for many useful discussions. W. J. Li, D. X. Yao, and E. W. Carlson acknowledge support from Research Corporation for Science Advancement and NSF Grant No. DMR 11-06187. W. J. Li acknowledges support from the Purdue Research Foundation. D. X. Yao aeknowledgcs support from the National Basic Research Program of China (No. 2012CB821400), the National Natural Science Foundation of China (Grant Nos. 11074310 and 11275279), Research Fund for the Doctoral Program of Higher Education of China (20110171110026), and NCET-11-0547. EWC thanks Ecole Superieure de Physique et de Chimie Industrielles (ESPCI) for hospitality.
文摘Based on the phenomenon of curvature-induced doping in graphene we propose a class of Peltier cooling devices, produced by geometrical effects, without gating. We show how a graphene nanorib- bon laid on an array of curved nano cylinders can be used to create a targeted and tunable cooling device. Using two different approaches, the Nonequilibrium Green's Function (NEGF) method and experimental inputs, we predict that the cooling kW/cm2, on par with the best known techniques power of such a device can approach the order of using standard superlattice structures. The structure proposed here helps pave the way toward designing graphene electronics which use geometry rather than gating to control devices.
基金supported financially by the National Natural Science Foundation of China (Nos. 51672139, 51472127 and 51272144)the Projects Supported by the Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education (No. KF2016-01)
文摘The rational assembly of quantum dots on two-dimensional(2 D) carbonaceous materials is very promising to produce materials, but remains a challenge. Here, we develop an assembly strategy of growing Na3 V2(PO4)3 quantum dots with superlattice structure(NVP-QDs-SL) for obtaining precise control of the size, distribution and crystallinity. The multifunctional lignocelluloses(LCs) used as a hard carbon source induce heterogeneous nucleation and confined growth of NVP-QDs-SL, leading to the uniform distribution of NVP-QDs-SL in H/S-doped hard carbon ultra-thin nanosheets(HCS). Detailed electrochemical analysis results from sodium-ion batteries of NVP-QDs-SL show that NVP-QDs-SL could trap the electrons inside HCS, significantly enhancing Na ion storage and transfer kinetics. Compared to the common Na3 V2(PO4)3 nanoparticle cathode, the NVP-QDs-SL/HCS cathode exhibits a high reversible capacity of 149.2 m A h g^-1 at a 0.1 C rate, which is far beyond the theoretical capacity of Na3 V2(PO4)3(117.6 m A h g^-1).At the ultrahigh current rate of 100 C, this cathode still remains a high discharge capacity of 40 m A h g-1.Even after cycling at 20 C over 3000 cycles, an ultrahigh coulombic efficiency close to 100% is still obtained,highlighting its excellent long cycling life, remarkable rate performance and energy density.