The Advanced Space-based Solar Observatory(ASO-S)is a mission proposed for the 25 th solar maximum by the Chinese solar community.The scientific objectives are to study the relationships between the solar magnetic fie...The Advanced Space-based Solar Observatory(ASO-S)is a mission proposed for the 25 th solar maximum by the Chinese solar community.The scientific objectives are to study the relationships between the solar magnetic field,solar flares and coronal mass ejections(CMEs).Three payloads are deployed:the Full-disk vector Magneto Graph(FMG),the Lyman-αSolar Telescope(LST)and the Hard X-ray Imager(HXI).ASO-S will perform the first simultaneous observations of the photospheric vector magnetic field,non-thermal imaging of solar flares,and the initiation and early propagation of CMEs on a single platform.ASO-S is scheduled to be launched into a 720 km Sun-synchronous orbit in 2022.This paper presents an overview of the mission till the end of Phase-B and the beginning of Phase-C.展开更多
As one of the payloads for the Advanced Space-based Solar Observatory(ASO-S)mission,the Lyman-alpha(Lyα)Solar Telescope(LST)is aimed at imaging the Sun and the inner corona up to 2.5 R⊙(mean solar radius)in both the...As one of the payloads for the Advanced Space-based Solar Observatory(ASO-S)mission,the Lyman-alpha(Lyα)Solar Telescope(LST)is aimed at imaging the Sun and the inner corona up to 2.5 R⊙(mean solar radius)in both the Lyα(121.6 nm)and visible wavebands with high temporo-spatial resolution,mainly targeting solar flares,coronal mass ejections(CMEs)and filaments/prominences.LST observations allow us to trace solar eruptive phenomena from the disk center to the inner corona,to study the relationships between eruptive prominences/filaments,solar flares and CMEs,to explore the dynamical processes and evolution of solar eruptions,to diagnose solar winds,and to derive physical parameters of the solar atmosphere.LST is actually an instrument suite,which consists of a Solar Disk Imager(SDI),a Solar Corona Imager(SCI),a White-light Solar Telescope(WST)and two Guide Telescopes(GTs).This is the first paper in a series of LST-related papers.In this paper,we introduce the scientific objectives,present an overview of the LST payload and describe the planned observations.The detailed design and data along with potential diagnostics are described in the second(Paper II)and third(Paper III)papers,respectively,appearing in this issue.展开更多
The Advanced Space-based Solar Observatory(ASO-S)is the first approved solar space mission in China.This special issue includes a total of 13 papers,which were selected from presentations at the First ASO-S Internatio...The Advanced Space-based Solar Observatory(ASO-S)is the first approved solar space mission in China.This special issue includes a total of 13 papers,which were selected from presentations at the First ASO-S International Workshop,held in Nanjing from 2019 January 15 to 18.Taken together,these 13 papers provide a complete description of ASO-S until the end of Phase-B and the beginning of Phase-C.展开更多
As one of the three payloads for the Advanced Space-based Solar Observatory(ASO-S)mission,the Lyman-alpha(Lyα)Solar Telescope(LST)is composed of three instruments:a Solar Corona Imager(SCI),a LyαSolar Disk Imager(SD...As one of the three payloads for the Advanced Space-based Solar Observatory(ASO-S)mission,the Lyman-alpha(Lyα)Solar Telescope(LST)is composed of three instruments:a Solar Corona Imager(SCI),a LyαSolar Disk Imager(SDI)and a full-disk White-light Solar Telescope(WST).When working in-orbit,LST will simultaneously perform high-resolution imaging observations of all regions from the solar disk to the inner corona up to 2.5 R⊙(R⊙stands for the mean solar radius)with a spatial resolution of 4.8′′and 1.2′′for coronal and disk observations,respectively,and a temporal resolution of 30–120 s and 1–120 s for coronal and disk observations,respectively.The maximum exposure time can be up to20 s due to precise pointing and image stabilization function.Among the three telescopes of LST,SCI is a dual-waveband coronagraph simultaneously and independently observing the inner corona in the HI Lyα(121.6±10 nm)line and white light(WL)(700±40 nm)wavebands by using a narrowband Lyαbeam splitter and has a field of view(FOV)from 1.1 to 2.5 R⊙.The stray-light suppression level can attain<10^-6 B⊙(B⊙is the mean brightness of the solar disk)at 1.1 R⊙and≤5×10^-8 B⊙at 2.5 R⊙.SDI and WST are solar disk imagers working in the Lyαline and 360.0 nm wavebands,respectively,which adopt an off-axis two-mirror reflective structure with an FOV up to 1.2 R⊙,covering the inner coronal edge area and relating to coronal imaging.We present the up-to-date design for the LST payload.展开更多
We review the status of solar Lyαscience in anticipation of the upcoming Advanced Spacebased Solar Observatory(ASO-S)mission,planned for a late 2021(or 2022)launch.The mission carries a pair of the LyαSolar Telescop...We review the status of solar Lyαscience in anticipation of the upcoming Advanced Spacebased Solar Observatory(ASO-S)mission,planned for a late 2021(or 2022)launch.The mission carries a pair of the LyαSolar Telescopes(LST)capable of high resolution disk and off-limb imaging,which will provide the first synoptic Lyαimaging observations of the solar atmosphere.We discuss the history of Lyαimaging and latest results,and outline the open questions that ASO-S could address.ASO-S will launch at an optimal time for Lyαscience.Several other Lyαtelescopes will be in operation.We identify the synergies between ASO-S and other missions as well as serendipitous non-solar science opportunities.We conclude that ASO-S has the potential for breakthrough observations and discoveries in the chromosphere-corona interface where the Lyαemission is the major player.展开更多
Solar ultraviolet(UV) bursts are small-scale compact brightenings in transition region images. The spectral profiles of transition region lines in these bursts are significantly enhanced and broadened, often with ch...Solar ultraviolet(UV) bursts are small-scale compact brightenings in transition region images. The spectral profiles of transition region lines in these bursts are significantly enhanced and broadened, often with chromospheric absorption lines such as Ni ii 1335.203 and 1393.330 ? superimposed. We investigate the properties of several UV bursts using a coordinated observation of the Interface Region Imaging Spectrograph(IRIS), Solar Dynamics Observatory(SDO), and Hinode on February 7, 2015. We have identified 12 UV bursts, and 11 of them reveal small blueshifts of the Ni ii absorption lines. However, the Ni ii lines in one UV burst exhibit obvious redshifts of ~20 km s-1, which appear to be related to the cold plasma downflows observed in the IRIS slit-jaw images. We also examine the three-dimensional magnetic field topology using a magnetohydrostatic model, and find that some UV bursts are associated with magnetic null points or bald patches. In addition, we find that these UV bursts reveal no obvious coronal signatures from the observations of the Atmospheric Imaging Assembly(AIA) on board SDO and the EUV Imaging Spectrometer(EIS) on board Hinode.展开更多
During non-flaring times,the radio flux of the Sun at wavelengths of a few centimeters to several tens of centimeters mostly originates from thermal bremsstrahlung emission,very similar to extremeultraviolet(EUV) radi...During non-flaring times,the radio flux of the Sun at wavelengths of a few centimeters to several tens of centimeters mostly originates from thermal bremsstrahlung emission,very similar to extremeultraviolet(EUV) radiation.Owing to such a proximity,it is feasible to investigate the relationship between the EUV emission and radio emission in a quantitative way.In this paper,we reconstruct the radio images of the Sun through the differential emission measure obtained from multi-wavelength EUV images of the Atmospheric Imaging Assembly on board Solar Dynamics Observatory(SDO).Through comparing the synthetic radio images at 6 GHz with those observed by the Siberian Radioheliograph,we find that the predicted radio flux is qualitatively consistent with the observed value,confirming thermal origin of the coronal radio emission during non-flaring times.The results further show that the predicted radio flux is closer to the observations in the case that includes the contribution of plasma with temperatures above 3 MK than in the case of only involving low temperature plasma,as was usually done in the pre-SDO era.We also discuss applications of the method and uncertainties of the results.展开更多
Solar hard X-rays(HXRs) appear in the form of either footpoint sources or coronal sources. Each individual source provides its own critical information on acceleration of nonthermal electrons and plasma heating. Earli...Solar hard X-rays(HXRs) appear in the form of either footpoint sources or coronal sources. Each individual source provides its own critical information on acceleration of nonthermal electrons and plasma heating. Earlier studies found that the HXR emission in some events manifests a broken-up power-law spectrum, with the break energy around a few hundred keV based on spatially-integrated spectral analysis,and it does not distinguish the contributions from individual sources. In this paper, we report on the brokenup spectra of a coronal source studied using HXR data recorded by Reuven Ramaty High Energy Solar Spectroscopic Imager(RHESSI) during the SOL2017–09–10 T16:06(GOES class X8.2) flare. The flare occurred behind the western limb and its footpoint sources were mostly occulted by the disk. We could clearly identify such broken-up spectra pertaining solely to the coronal source during the flare peak time and after. Since a significant pileup effect on the RHESSI spectra is expected for this intense solar flare, we have selected the pileup correction factor, p = 2. In this case, we found the resulting RHESSI temperature(~30MK) to be similar to the GOES soft X-ray temperature and break energies of 45–60 keV. Above the break energy, the spectrum hardens with time from spectral index of 3.4 to 2.7, and the difference in spectral indices below and above the break energy increases from 1.5 to 5 with time. However, we note that when p = 2 is assumed, a single power-law fitting is also possible with the RHESSI temperature higher than the GOES temperature by ~10MK. Possible scenarios for the broken-up spectra of the loop-top HXR source are briefly discussed.展开更多
Using the correlation between the radiance or Doppler velocity and the extrapolated magnetic field, we determined the emission heights of a set of solar transition region lines in an equatorial coronal hole and in the...Using the correlation between the radiance or Doppler velocity and the extrapolated magnetic field, we determined the emission heights of a set of solar transition region lines in an equatorial coronal hole and in the surrounding quiet Sun region. We found that for all of the six lower-transition-region lines, the emission height is about 4-5 Mm in the equatorial coronal hole, and around 2 Mm in the quiet Sun region. This result confirms the previous findings that plasma with different temperature can coexist at the same layer of transition region. In the quiet Sun region, the emission height of the upper-transition-region line Ne VIII is almost the same that of the lower-transition-region line, but in the coronal hole, it is twice as high. This difference reveals that the outflow of Ne VIII is a signature of solar wind in the coronal hole and is just a mass supply to the large loops in the quiet Sun.展开更多
日冕物质抛射(Coronal Mass Ejection,CME)通常会将其后面区域中的磁场急剧拉伸,使得极性相反的磁力线相互靠近而形成磁重联电流片.磁重联电流片在爆发过程中,既是磁自由能迅速转化为热能、等离子动能和高能粒子束流的重要区域,又起着...日冕物质抛射(Coronal Mass Ejection,CME)通常会将其后面区域中的磁场急剧拉伸,使得极性相反的磁力线相互靠近而形成磁重联电流片.磁重联电流片在爆发过程中,既是磁自由能迅速转化为热能、等离子动能和高能粒子束流的重要区域,又起着连接日冕物质抛射和耀斑的作用.2003年1月3日和11月4日的两次CME事件,在CME离开太阳表面附近之后,均有电流片被观测到.结合搭载在SOHO(Solar and Heliospheric Observatory)上的LASCO(Large Angle and Spectrometric Coronagraph)、UVCS(Ultraviolet Coronagraph Spectrometer)数据,以及大熊湖天文台和云南天文台的Hα资料,研究两次爆发事件的动力学特征,以及电流片的物理特性.电流片中高电离度粒子的存在,如Fe^(+17)、Si^(+11),表明电流片区域中温度高达3×10~6~5×10~6K.直接测量发现电流片的厚度在1.3×10~4~1.1×10~5km范围之间,并随时间先增大后逐渐减小.利用CHIANTI(ver 7.1)光谱代码,进一步计算得到2003年1月3日电流片中的电子温度和相应辐射量(Emission Measure,EM)的均值分别为3.86×10~6K和6.1×10^(24)cm^(-5).另一方面,利用SOHO/UVCS观测数据对2003年11月4日的CME爆发事件中的电流片进行分析,发现电流片呈现准周期性扭转运动.展开更多
作为中国首颗综合性太阳探测卫星的先进天基太阳天文台(Advanced Space-based Solar Observatory,ASO-S)于北京时间2022年10月9日7时43分在酒泉卫星发射中心成功发射.扼要介绍ASO-S卫星提出的背景、卫星的研制历程、科学目标、载荷构成...作为中国首颗综合性太阳探测卫星的先进天基太阳天文台(Advanced Space-based Solar Observatory,ASO-S)于北京时间2022年10月9日7时43分在酒泉卫星发射中心成功发射.扼要介绍ASO-S卫星提出的背景、卫星的研制历程、科学目标、载荷构成、任务总体以及卫星研制的组织架构,并对卫星的运行和科学产出略作展望.展开更多
利用太阳射电宽带频谱仪(0.7-7.6 GHz)于2001年10月19目观测到的复杂太阳射电大爆发,呈现出许多有趣的特征.结合NoRH(Nobevama Radio Heliograph)的高空间分辨率射电成像观测及TRACE(Transition Region and Coronal Explorer)在远紫外(E...利用太阳射电宽带频谱仪(0.7-7.6 GHz)于2001年10月19目观测到的复杂太阳射电大爆发,呈现出许多有趣的特征.结合NoRH(Nobevama Radio Heliograph)的高空间分辨率射电成像观测及TRACE(Transition Region and Coronal Explorer)在远紫外(EUV)波段的高空间分辨率成像观测资料,分析了该爆发的射电频谱特征和微波射电源的演化以及它们与复杂的EUV日冕环系统的关系.该爆发是一个双带大耀斑的射电表征.前一部分以宽带(从厘米到米波)爆发为主,机制是回旋同步辐射,所对应的是环足源的辐射;后一部分以窄带(分米到米波)分米波爆发为主,机制是等离子体辐射和回旋共振辐射的联合,对应的是环顶源的辐射.展开更多
We investigate the interaction between two filaments and the subsequent filament eruption event observed from different viewing angles by Hinode, the Solar and Heliospheric Observatory, and the Solar Terrestrial Relat...We investigate the interaction between two filaments and the subsequent filament eruption event observed from different viewing angles by Hinode, the Solar and Heliospheric Observatory, and the Solar Terrestrial Relations Observatory. In the event, the two filaments rose high, interacted with each other, and finally were ejected along two different paths. We measure the bulk-flow velocity using spectroscopic data. We find significant outflows at the speed of a few hundreds of km s 1 during the filament eruption, and also some downflows at a few tens of km s-1 at the edge of the eruption region in the late stage of the eruption. The erupting material was composed of plasmas with a wide temperature range of 10-4–106 K. These results shed light on the filament nature and the coronal dynamics.展开更多
Persistent outflows have recently been detected at the boundaries of some active regions. Although these outflows are suggested to be possible sources of the slow solar wind, the nature of these outflows is poorly und...Persistent outflows have recently been detected at the boundaries of some active regions. Although these outflows are suggested to be possible sources of the slow solar wind, the nature of these outflows is poorly understood. Through an analy- sis of an image sequence obtained by the X-Ray Telescope onboard the Hinode spacecraft, we found that quasi-periodic outflows are present in the boundary of an active region. The flows are observed to occur intermittently, often with a period of 5-10 min. The proj ected flow speed can reach more than 200 km s^-1, while its distribution peaks around 50 km s^-1. This sporadic high-speed outflow may play an important role in the mass loading process of the slow solar wind. Our results may imply that the outflow of the slow solar wind in the boundary of the active region is intermittent and quasiperiodic in nature.展开更多
Solar coronal loops show significant plasma motions during their formation and eruption stages. Dynamic cool coronal structures, on the other hand, are often observed to propagate along coronal loops. We report on the...Solar coronal loops show significant plasma motions during their formation and eruption stages. Dynamic cool coronal structures, on the other hand, are often observed to propagate along coronal loops. We report on the discovery of two types of dynamic cool coronal structures, and characterize their fundamental properties. Using the EUV 304 A images from the Extreme UltraViolet Imager (EUVI) telescope on the Solar TErrestrial RElation Observatory (STEREO) and the Ca Ⅱ filtergrams from the Solar Optical Telescope (SOT) instrument on Hinode, we study the evolution of an EUV arch and the kinematics of cool coronal structures. The EUV 304A observations show that a missile-like plasmoid moves along an arch-shaped trajectory, with an average velocity of 31 km s^- 1. About three hours later, a plasma arch forms along the trajectory, subsequently the top part of the arch fades away and disappears; meanwhile the plasma belonging to the two legs of the arch flows downward to the arch's feet. During the arch formation and disappearance, SOT Ca Ⅱ images explore dynamic cool coronal structures beneath the arch. By tracking these structures, we classify them into two types. Type I is thread- like in shape and flows downward with a greater average velocity of 72 km s-l; finally it combines with a loop fibril at a chromospheric altitude. Type Ⅱ is shape-transformable and sometimes rolling as it flows downward with a smaller velocity of 37 km s-1, then disappears insularly in the chromosphere. It is suggested that the two types of structures are possibly controlled by different magnetic configurations.展开更多
We statistically study the properties of emerging flux regions(EFRs)and response of the upper solar atmosphere to the flux emergence using data from the Helioseismic and Magnetic Imager and the Atmospheric Imaging A...We statistically study the properties of emerging flux regions(EFRs)and response of the upper solar atmosphere to the flux emergence using data from the Helioseismic and Magnetic Imager and the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory.Parameters including total emerged flux,flux growth rate,maximum area,duration of the emergence and separation speed of the opposite polarities are adopted to delineate the properties of EFRs.The response of the upper atmosphere is addressed by the response of the atmosphere at different wavelengths (and thus at different temperatures).According to our results,the total emerged fluxes are in the range of(0.44-11.2)×1019 Mx while the maximum area ranges from 17 to 182 arcsec2.The durations of the emergence are between 1 and 12 h,which are positively correlated to both the total emerged flux and the maximum area.The maximum distances between the opposite polarities are 7-25 arcsec and are also positively correlated to the duration.The separation speeds are from 0.05 to 1.08 km s-1,negatively correlated to the duration.The derived flux growth rates are(0.1-1.3)×1019 Mx h-1, which are positively correlated to the total emerging flux.The upper atmosphere first responds to the flux emergence in the 1600Achromospheric line,and then tens to hundreds of seconds later,in coronal lines,such as the 171(T=105.8 K)and 211(T=106.3 K)lines almost simultaneously,suggesting the successive heating of the atmosphere from the chromosphere to the corona.展开更多
We have measured the line widths and nonthermal velocities in 12 solar regions using high resolution EUV data taken by Hinode/EIS. We find that there exists a positive correlation between the intensity and nonthermal ...We have measured the line widths and nonthermal velocities in 12 solar regions using high resolution EUV data taken by Hinode/EIS. We find that there exists a positive correlation between the intensity and nonthermal velocity for the Fe xII emission line as well as some other lines. The correlation coefficients decrease from the disk center to the limb. However, the nonthermal velocities of a particular spectral line do not vary much in different regions, so they are considered isotropic. In particular, we find that for a coronal loop structure, the largest widths and nonthermal velocities occur at the footpoints, where outflows appear. Based on these observational results, we discuss several physical processes responsible for coronal heating.展开更多
基金supported by the Strategic Priority Research Program on Space Science, Chinese Academy of Sciences (Grant Nos. XDA15320100, XDA15320102, XDA15320103, XDA15320104, XDA15320300 and XDA15052200)supported by the National Natural Science Foundation of China (Grant Nos. 11427803, U1731241, U1631242 and 11820101002)
文摘The Advanced Space-based Solar Observatory(ASO-S)is a mission proposed for the 25 th solar maximum by the Chinese solar community.The scientific objectives are to study the relationships between the solar magnetic field,solar flares and coronal mass ejections(CMEs).Three payloads are deployed:the Full-disk vector Magneto Graph(FMG),the Lyman-αSolar Telescope(LST)and the Hard X-ray Imager(HXI).ASO-S will perform the first simultaneous observations of the photospheric vector magnetic field,non-thermal imaging of solar flares,and the initiation and early propagation of CMEs on a single platform.ASO-S is scheduled to be launched into a 720 km Sun-synchronous orbit in 2022.This paper presents an overview of the mission till the end of Phase-B and the beginning of Phase-C.
基金supported by the National Natural Science Foundation of China (Grant Nos.11427803 and U1731241)the CAS Strategic Pioneer Program on Space Science (Grant Nos.XDA04061003, XDA04076100, XDA15052200, XDA15320103 and XDA15320301)
文摘As one of the payloads for the Advanced Space-based Solar Observatory(ASO-S)mission,the Lyman-alpha(Lyα)Solar Telescope(LST)is aimed at imaging the Sun and the inner corona up to 2.5 R⊙(mean solar radius)in both the Lyα(121.6 nm)and visible wavebands with high temporo-spatial resolution,mainly targeting solar flares,coronal mass ejections(CMEs)and filaments/prominences.LST observations allow us to trace solar eruptive phenomena from the disk center to the inner corona,to study the relationships between eruptive prominences/filaments,solar flares and CMEs,to explore the dynamical processes and evolution of solar eruptions,to diagnose solar winds,and to derive physical parameters of the solar atmosphere.LST is actually an instrument suite,which consists of a Solar Disk Imager(SDI),a Solar Corona Imager(SCI),a White-light Solar Telescope(WST)and two Guide Telescopes(GTs).This is the first paper in a series of LST-related papers.In this paper,we introduce the scientific objectives,present an overview of the LST payload and describe the planned observations.The detailed design and data along with potential diagnostics are described in the second(Paper II)and third(Paper III)papers,respectively,appearing in this issue.
文摘The Advanced Space-based Solar Observatory(ASO-S)is the first approved solar space mission in China.This special issue includes a total of 13 papers,which were selected from presentations at the First ASO-S International Workshop,held in Nanjing from 2019 January 15 to 18.Taken together,these 13 papers provide a complete description of ASO-S until the end of Phase-B and the beginning of Phase-C.
基金supported by Chinese Academy of Sciences (CAS)supported by the National Natural Science Foundation of China (Grant Nos. 11427803, U1731241, U1731114 and U1531106)the CAS Strategic Pioneer Program on Space Science (Grant Nos. XDA04076100, XDA15052200, XDA15320103 and XDA15320301)
文摘As one of the three payloads for the Advanced Space-based Solar Observatory(ASO-S)mission,the Lyman-alpha(Lyα)Solar Telescope(LST)is composed of three instruments:a Solar Corona Imager(SCI),a LyαSolar Disk Imager(SDI)and a full-disk White-light Solar Telescope(WST).When working in-orbit,LST will simultaneously perform high-resolution imaging observations of all regions from the solar disk to the inner corona up to 2.5 R⊙(R⊙stands for the mean solar radius)with a spatial resolution of 4.8′′and 1.2′′for coronal and disk observations,respectively,and a temporal resolution of 30–120 s and 1–120 s for coronal and disk observations,respectively.The maximum exposure time can be up to20 s due to precise pointing and image stabilization function.Among the three telescopes of LST,SCI is a dual-waveband coronagraph simultaneously and independently observing the inner corona in the HI Lyα(121.6±10 nm)line and white light(WL)(700±40 nm)wavebands by using a narrowband Lyαbeam splitter and has a field of view(FOV)from 1.1 to 2.5 R⊙.The stray-light suppression level can attain<10^-6 B⊙(B⊙is the mean brightness of the solar disk)at 1.1 R⊙and≤5×10^-8 B⊙at 2.5 R⊙.SDI and WST are solar disk imagers working in the Lyαline and 360.0 nm wavebands,respectively,which adopt an off-axis two-mirror reflective structure with an FOV up to 1.2 R⊙,covering the inner coronal edge area and relating to coronal imaging.We present the up-to-date design for the LST payload.
基金supported by NRL (Grant N00173-16-1-G029)funded by the NASA H-TiDeS program under NNG12WF67I
文摘We review the status of solar Lyαscience in anticipation of the upcoming Advanced Spacebased Solar Observatory(ASO-S)mission,planned for a late 2021(or 2022)launch.The mission carries a pair of the LyαSolar Telescopes(LST)capable of high resolution disk and off-limb imaging,which will provide the first synoptic Lyαimaging observations of the solar atmosphere.We discuss the history of Lyαimaging and latest results,and outline the open questions that ASO-S could address.ASO-S will launch at an optimal time for Lyαscience.Several other Lyαtelescopes will be in operation.We identify the synergies between ASO-S and other missions as well as serendipitous non-solar science opportunities.We conclude that ASO-S has the potential for breakthrough observations and discoveries in the chromosphere-corona interface where the Lyαemission is the major player.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA17040507)the National Natural Science Foundation of China(Grant Nos.11825301,11790304(11790300),41774183&41861134033)the Strategic Pioneer Program on Space Science of Chinese Academy of Sciences(Grant Nos.XDA15011000&XDA15010900)
文摘Solar ultraviolet(UV) bursts are small-scale compact brightenings in transition region images. The spectral profiles of transition region lines in these bursts are significantly enhanced and broadened, often with chromospheric absorption lines such as Ni ii 1335.203 and 1393.330 ? superimposed. We investigate the properties of several UV bursts using a coordinated observation of the Interface Region Imaging Spectrograph(IRIS), Solar Dynamics Observatory(SDO), and Hinode on February 7, 2015. We have identified 12 UV bursts, and 11 of them reveal small blueshifts of the Ni ii absorption lines. However, the Ni ii lines in one UV burst exhibit obvious redshifts of ~20 km s-1, which appear to be related to the cold plasma downflows observed in the IRIS slit-jaw images. We also examine the three-dimensional magnetic field topology using a magnetohydrostatic model, and find that some UV bursts are associated with magnetic null points or bald patches. In addition, we find that these UV bursts reveal no obvious coronal signatures from the observations of the Atmospheric Imaging Assembly(AIA) on board SDO and the EUV Imaging Spectrometer(EIS) on board Hinode.
基金supported by the National Natural Science Foundation of China(Grant Nos.11722325,11733003,11790303 and 11790300)the Jiangsu Natural Science Foundation(BK20170011)supported by the “Dengfeng B” program of Nanjing University
文摘During non-flaring times,the radio flux of the Sun at wavelengths of a few centimeters to several tens of centimeters mostly originates from thermal bremsstrahlung emission,very similar to extremeultraviolet(EUV) radiation.Owing to such a proximity,it is feasible to investigate the relationship between the EUV emission and radio emission in a quantitative way.In this paper,we reconstruct the radio images of the Sun through the differential emission measure obtained from multi-wavelength EUV images of the Atmospheric Imaging Assembly on board Solar Dynamics Observatory(SDO).Through comparing the synthetic radio images at 6 GHz with those observed by the Siberian Radioheliograph,we find that the predicted radio flux is qualitatively consistent with the observed value,confirming thermal origin of the coronal radio emission during non-flaring times.The results further show that the predicted radio flux is closer to the observations in the case that includes the contribution of plasma with temperatures above 3 MK than in the case of only involving low temperature plasma,as was usually done in the pre-SDO era.We also discuss applications of the method and uncertainties of the results.
基金supported by the National Natural Science Foundation of China (NSFC, Grant Nos. 11790303 41774180, 11703017 and 11873036)the Major International Joint Research Project (11820101002) of NSFCsupport from the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology+2 种基金the Young Scholars Program of Shandong University, Weihaithe Joint Research Fund in Astronomy (U1631242 and U1731241) under the cooperative agreement between NSFC and CASthe “Thousand Young Talents Plan”
文摘Solar hard X-rays(HXRs) appear in the form of either footpoint sources or coronal sources. Each individual source provides its own critical information on acceleration of nonthermal electrons and plasma heating. Earlier studies found that the HXR emission in some events manifests a broken-up power-law spectrum, with the break energy around a few hundred keV based on spatially-integrated spectral analysis,and it does not distinguish the contributions from individual sources. In this paper, we report on the brokenup spectra of a coronal source studied using HXR data recorded by Reuven Ramaty High Energy Solar Spectroscopic Imager(RHESSI) during the SOL2017–09–10 T16:06(GOES class X8.2) flare. The flare occurred behind the western limb and its footpoint sources were mostly occulted by the disk. We could clearly identify such broken-up spectra pertaining solely to the coronal source during the flare peak time and after. Since a significant pileup effect on the RHESSI spectra is expected for this intense solar flare, we have selected the pileup correction factor, p = 2. In this case, we found the resulting RHESSI temperature(~30MK) to be similar to the GOES soft X-ray temperature and break energies of 45–60 keV. Above the break energy, the spectrum hardens with time from spectral index of 3.4 to 2.7, and the difference in spectral indices below and above the break energy increases from 1.5 to 5 with time. However, we note that when p = 2 is assumed, a single power-law fitting is also possible with the RHESSI temperature higher than the GOES temperature by ~10MK. Possible scenarios for the broken-up spectra of the loop-top HXR source are briefly discussed.
基金Hui Tian, Jian-Sen He, Bo Tan, and Shuo Yao are supported by the National Natural Science Foundation of China under Grants 40574078, 40336053 and40436015by the Beijing Education Project XK100010404+4 种基金the foundation Major Project of National Basic Research, under contract 2006CB806305Hui Tian is also supported by China Scholarship Council for his stay in the Max-Planck-Institut fr Sonnen system for schung in GermanyLi-Dong Xia is supported by the National Natural Science Foundation of China under Grant 40574064the Programme for New Century Excellent Talents in University (NCET)supported by DLR, CNES, NASA, and the ESA PRODEX programme (Swiss contribution).
文摘Using the correlation between the radiance or Doppler velocity and the extrapolated magnetic field, we determined the emission heights of a set of solar transition region lines in an equatorial coronal hole and in the surrounding quiet Sun region. We found that for all of the six lower-transition-region lines, the emission height is about 4-5 Mm in the equatorial coronal hole, and around 2 Mm in the quiet Sun region. This result confirms the previous findings that plasma with different temperature can coexist at the same layer of transition region. In the quiet Sun region, the emission height of the upper-transition-region line Ne VIII is almost the same that of the lower-transition-region line, but in the coronal hole, it is twice as high. This difference reveals that the outflow of Ne VIII is a signature of solar wind in the coronal hole and is just a mass supply to the large loops in the quiet Sun.
文摘日冕物质抛射(Coronal Mass Ejection,CME)通常会将其后面区域中的磁场急剧拉伸,使得极性相反的磁力线相互靠近而形成磁重联电流片.磁重联电流片在爆发过程中,既是磁自由能迅速转化为热能、等离子动能和高能粒子束流的重要区域,又起着连接日冕物质抛射和耀斑的作用.2003年1月3日和11月4日的两次CME事件,在CME离开太阳表面附近之后,均有电流片被观测到.结合搭载在SOHO(Solar and Heliospheric Observatory)上的LASCO(Large Angle and Spectrometric Coronagraph)、UVCS(Ultraviolet Coronagraph Spectrometer)数据,以及大熊湖天文台和云南天文台的Hα资料,研究两次爆发事件的动力学特征,以及电流片的物理特性.电流片中高电离度粒子的存在,如Fe^(+17)、Si^(+11),表明电流片区域中温度高达3×10~6~5×10~6K.直接测量发现电流片的厚度在1.3×10~4~1.1×10~5km范围之间,并随时间先增大后逐渐减小.利用CHIANTI(ver 7.1)光谱代码,进一步计算得到2003年1月3日电流片中的电子温度和相应辐射量(Emission Measure,EM)的均值分别为3.86×10~6K和6.1×10^(24)cm^(-5).另一方面,利用SOHO/UVCS观测数据对2003年11月4日的CME爆发事件中的电流片进行分析,发现电流片呈现准周期性扭转运动.
文摘作为中国首颗综合性太阳探测卫星的先进天基太阳天文台(Advanced Space-based Solar Observatory,ASO-S)于北京时间2022年10月9日7时43分在酒泉卫星发射中心成功发射.扼要介绍ASO-S卫星提出的背景、卫星的研制历程、科学目标、载荷构成、任务总体以及卫星研制的组织架构,并对卫星的运行和科学产出略作展望.
文摘利用太阳射电宽带频谱仪(0.7-7.6 GHz)于2001年10月19目观测到的复杂太阳射电大爆发,呈现出许多有趣的特征.结合NoRH(Nobevama Radio Heliograph)的高空间分辨率射电成像观测及TRACE(Transition Region and Coronal Explorer)在远紫外(EUV)波段的高空间分辨率成像观测资料,分析了该爆发的射电频谱特征和微波射电源的演化以及它们与复杂的EUV日冕环系统的关系.该爆发是一个双带大耀斑的射电表征.前一部分以宽带(从厘米到米波)爆发为主,机制是回旋同步辐射,所对应的是环足源的辐射;后一部分以窄带(分米到米波)分米波爆发为主,机制是等离子体辐射和回旋共振辐射的联合,对应的是环顶源的辐射.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10878002 and 10933003)by the National Basic Research Program of China (973 program, Grant 2011CB811402)
文摘We investigate the interaction between two filaments and the subsequent filament eruption event observed from different viewing angles by Hinode, the Solar and Heliospheric Observatory, and the Solar Terrestrial Relations Observatory. In the event, the two filaments rose high, interacted with each other, and finally were ejected along two different paths. We measure the bulk-flow velocity using spectroscopic data. We find significant outflows at the speed of a few hundreds of km s 1 during the filament eruption, and also some downflows at a few tens of km s-1 at the edge of the eruption region in the late stage of the eruption. The erupting material was composed of plasmas with a wide temperature range of 10-4–106 K. These results shed light on the filament nature and the coronal dynamics.
基金supported by the National Natural Science Foundation of China (Grant Nos.40874090 and 40931055)
文摘Persistent outflows have recently been detected at the boundaries of some active regions. Although these outflows are suggested to be possible sources of the slow solar wind, the nature of these outflows is poorly understood. Through an analy- sis of an image sequence obtained by the X-Ray Telescope onboard the Hinode spacecraft, we found that quasi-periodic outflows are present in the boundary of an active region. The flows are observed to occur intermittently, often with a period of 5-10 min. The proj ected flow speed can reach more than 200 km s^-1, while its distribution peaks around 50 km s^-1. This sporadic high-speed outflow may play an important role in the mass loading process of the slow solar wind. Our results may imply that the outflow of the slow solar wind in the boundary of the active region is intermittent and quasiperiodic in nature.
基金supported by the National Natural Science Foundation of China(Grant Nos.40890161 and 40674081)the CAS Project KJCX2-YW-T04,and the National Basic Research Program of China(Grant No.G2006CB806303)
文摘Solar coronal loops show significant plasma motions during their formation and eruption stages. Dynamic cool coronal structures, on the other hand, are often observed to propagate along coronal loops. We report on the discovery of two types of dynamic cool coronal structures, and characterize their fundamental properties. Using the EUV 304 A images from the Extreme UltraViolet Imager (EUVI) telescope on the Solar TErrestrial RElation Observatory (STEREO) and the Ca Ⅱ filtergrams from the Solar Optical Telescope (SOT) instrument on Hinode, we study the evolution of an EUV arch and the kinematics of cool coronal structures. The EUV 304A observations show that a missile-like plasmoid moves along an arch-shaped trajectory, with an average velocity of 31 km s^- 1. About three hours later, a plasma arch forms along the trajectory, subsequently the top part of the arch fades away and disappears; meanwhile the plasma belonging to the two legs of the arch flows downward to the arch's feet. During the arch formation and disappearance, SOT Ca Ⅱ images explore dynamic cool coronal structures beneath the arch. By tracking these structures, we classify them into two types. Type I is thread- like in shape and flows downward with a greater average velocity of 72 km s-l; finally it combines with a loop fibril at a chromospheric altitude. Type Ⅱ is shape-transformable and sometimes rolling as it flows downward with a smaller velocity of 37 km s-1, then disappears insularly in the chromosphere. It is suggested that the two types of structures are possibly controlled by different magnetic configurations.
基金supported by the National Natural Science Foundation of China(Grant Nos.10873038 and 10833007)the National Basic Research Program of China(973Program,2011CB811402).
文摘We statistically study the properties of emerging flux regions(EFRs)and response of the upper solar atmosphere to the flux emergence using data from the Helioseismic and Magnetic Imager and the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory.Parameters including total emerged flux,flux growth rate,maximum area,duration of the emergence and separation speed of the opposite polarities are adopted to delineate the properties of EFRs.The response of the upper atmosphere is addressed by the response of the atmosphere at different wavelengths (and thus at different temperatures).According to our results,the total emerged fluxes are in the range of(0.44-11.2)×1019 Mx while the maximum area ranges from 17 to 182 arcsec2.The durations of the emergence are between 1 and 12 h,which are positively correlated to both the total emerged flux and the maximum area.The maximum distances between the opposite polarities are 7-25 arcsec and are also positively correlated to the duration.The separation speeds are from 0.05 to 1.08 km s-1,negatively correlated to the duration.The derived flux growth rates are(0.1-1.3)×1019 Mx h-1, which are positively correlated to the total emerging flux.The upper atmosphere first responds to the flux emergence in the 1600Achromospheric line,and then tens to hundreds of seconds later,in coronal lines,such as the 171(T=105.8 K)and 211(T=106.3 K)lines almost simultaneously,suggesting the successive heating of the atmosphere from the chromosphere to the corona.
基金supported by the National Natural Science Foundation of China under grants 10673004 and 10878002by NKBRSF under grant 2006 CB806302
文摘We have measured the line widths and nonthermal velocities in 12 solar regions using high resolution EUV data taken by Hinode/EIS. We find that there exists a positive correlation between the intensity and nonthermal velocity for the Fe xII emission line as well as some other lines. The correlation coefficients decrease from the disk center to the limb. However, the nonthermal velocities of a particular spectral line do not vary much in different regions, so they are considered isotropic. In particular, we find that for a coronal loop structure, the largest widths and nonthermal velocities occur at the footpoints, where outflows appear. Based on these observational results, we discuss several physical processes responsible for coronal heating.