The influenza virus RNA-dependent RNA polymerase is a heterotrimeric complex (PA, PB1 and PB2) with multiple enzymatic activities for catalyzing viral RNA transcription and replication. The roles of PB1 and PB2 have b...The influenza virus RNA-dependent RNA polymerase is a heterotrimeric complex (PA, PB1 and PB2) with multiple enzymatic activities for catalyzing viral RNA transcription and replication. The roles of PB1 and PB2 have been clearly defined, but PA is less well understood. The critical role of the polymerase complex in the influenza virus life cycle and high sequence conservation suggest it should be a major target for therapeutic intervention. However, until very recently, functional studies and drug discovery targeting the influenza polymerase have been hampered by the lack of three-dimensional structural information. We will review the recent progress in the structure and function of the PA subunit of influenza polymerase, and discuss prospects for the development of anti-influenza therapeutics based on available structures.展开更多
PP1, PP2A and PP2B, belonging to the PPP family of Ser/Thr protein phosphatases, participate in regulating many important physiological processes, such as cell cycle control, regulation of cell growth and division reg...PP1, PP2A and PP2B, belonging to the PPP family of Ser/Thr protein phosphatases, participate in regulating many important physiological processes, such as cell cycle control, regulation of cell growth and division regulation, etc. The sequence homology between them is relatively high, and ter- tiary structure is conserved. Because of the complexity of the structure of PP2A and the diversity of its regulatory subunits, its structure is less well known than those of PP1 and PP2B. The PP2A holoen- zyme consists of a heterodimeric core enzyme, comprising a scaffolding subunit and a catalytic sub- unit, as well as a variable regulatory subunit. In this study, the subunit compositions, similarities and differences between the Ser/Thr protein phsphatases structures are summarized.展开更多
The sea star Asterias amurensis is widely viewed as a severe“marine pest”because of its broad feeding habits.Over the past few decades,A.amurensis undergoes massive and sporadic population outbreaks worldwide,causin...The sea star Asterias amurensis is widely viewed as a severe“marine pest”because of its broad feeding habits.Over the past few decades,A.amurensis undergoes massive and sporadic population outbreaks worldwide,causing extensive economic and ecological losses to the local aquaculture industry and marine ecosystem.Understanding the genetic diversity and population structure of A.amurensis can provide vital information for resource management.By analyzing the polymorphism of the mitochondrial cytochrome C oxidase subunit I(COI)gene and ten simple sequence repeat(SSR)microsatellites markers,the genetic diversity and population structure of A.amurensis of four populations along the northern coast of China was uncovered.A total of 36 haplotypes were identified,and a main haplotype was found in four populations.The Qingdao(QD)population displayed the highest genetic diversity among all the populations.The AMOVA and pairwise F_(st)showed that there was small but statistically significant population differentiation among the four populations,especially between QD and Weihai(WH).Moreover,the principal component analysis(PCA)and admixture analysis showed that several individuals in Yantai(YT)and Dalian(DL)had little genetic association with other individuals.Overall,this study provided useful information of the genetic diversity and population structure of A.amurensis and will contribute to the resource management of A.amurensis in China.展开更多
There is a great need for new vaccine development against influenza A viruses due to the drawbacks of traditional vaccines that are mainly prepared using embryonated eggs.The main component of the current split influe...There is a great need for new vaccine development against influenza A viruses due to the drawbacks of traditional vaccines that are mainly prepared using embryonated eggs.The main component of the current split influenza A virus vaccine is viral hemagglutinin(HA)which induces a strong antibody-mediated immune response.To develop a modern vaccine against influenza A viruses,the current research has been focused on the universal vaccines targeting viral M2,NP and HA proteins.Crystallographic studies have shown that HA forms a trimer embedded on the viral envelope surface,and each monomer consists of a globular head(HA1)and a“rod-like”stalk region(HA2),the latter being more conserved among different HA subtypes and being the primary target for universal vaccines.In this study,we rationally designed the HA head based on the crystal structure of the 2009-pandemic influenza A(H1N1)virus HA as a model,tested its immunogenicity in mice,solved its crystal structure and further examined its immunological characteristics.The results show that the HA globular head can be easily prepared by in vitro refolding in an E.coli expression system,which maintains its intact structure and allows for the stimulation of a strong immune response.Together with recent reports on some similar HA globular head preparations we conclude that structure-based rational design of the HA globular head can be used for subtype-specific vaccines against influenza viruses.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 30599432)National Key Basic Research Program of China (Grant Nos. 2006 CB10901, 2006CB806503, 2007CB914301, 2006AA02A300 and 2007CB914304)
文摘The influenza virus RNA-dependent RNA polymerase is a heterotrimeric complex (PA, PB1 and PB2) with multiple enzymatic activities for catalyzing viral RNA transcription and replication. The roles of PB1 and PB2 have been clearly defined, but PA is less well understood. The critical role of the polymerase complex in the influenza virus life cycle and high sequence conservation suggest it should be a major target for therapeutic intervention. However, until very recently, functional studies and drug discovery targeting the influenza polymerase have been hampered by the lack of three-dimensional structural information. We will review the recent progress in the structure and function of the PA subunit of influenza polymerase, and discuss prospects for the development of anti-influenza therapeutics based on available structures.
基金the National Basic Research Program of China (973) (Grant No. 2004CB719906)the National Natural Science Foundation of China (30470393)
文摘PP1, PP2A and PP2B, belonging to the PPP family of Ser/Thr protein phosphatases, participate in regulating many important physiological processes, such as cell cycle control, regulation of cell growth and division regulation, etc. The sequence homology between them is relatively high, and ter- tiary structure is conserved. Because of the complexity of the structure of PP2A and the diversity of its regulatory subunits, its structure is less well known than those of PP1 and PP2B. The PP2A holoen- zyme consists of a heterodimeric core enzyme, comprising a scaffolding subunit and a catalytic sub- unit, as well as a variable regulatory subunit. In this study, the subunit compositions, similarities and differences between the Ser/Thr protein phsphatases structures are summarized.
基金Supported by the International Science Partnership Program of the Chinese Academy of Sciences(No.133137KYSB20200002)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA23050304)the Natural Science Foundation of Shandong Province(Nos.ZR2021MC151,ZR2021QD158)。
文摘The sea star Asterias amurensis is widely viewed as a severe“marine pest”because of its broad feeding habits.Over the past few decades,A.amurensis undergoes massive and sporadic population outbreaks worldwide,causing extensive economic and ecological losses to the local aquaculture industry and marine ecosystem.Understanding the genetic diversity and population structure of A.amurensis can provide vital information for resource management.By analyzing the polymorphism of the mitochondrial cytochrome C oxidase subunit I(COI)gene and ten simple sequence repeat(SSR)microsatellites markers,the genetic diversity and population structure of A.amurensis of four populations along the northern coast of China was uncovered.A total of 36 haplotypes were identified,and a main haplotype was found in four populations.The Qingdao(QD)population displayed the highest genetic diversity among all the populations.The AMOVA and pairwise F_(st)showed that there was small but statistically significant population differentiation among the four populations,especially between QD and Weihai(WH).Moreover,the principal component analysis(PCA)and admixture analysis showed that several individuals in Yantai(YT)and Dalian(DL)had little genetic association with other individuals.Overall,this study provided useful information of the genetic diversity and population structure of A.amurensis and will contribute to the resource management of A.amurensis in China.
基金by the National Basic Research Program(973 Program)(Grant No.2011CB504703)We are grateful to Dr Christopher Vavricka and Dr Guangwen Lu for their help.GFG is a leading principal investigator of the Innovative Research Group of the National Natural Science Foundation of China(Grant No.81021003).
文摘There is a great need for new vaccine development against influenza A viruses due to the drawbacks of traditional vaccines that are mainly prepared using embryonated eggs.The main component of the current split influenza A virus vaccine is viral hemagglutinin(HA)which induces a strong antibody-mediated immune response.To develop a modern vaccine against influenza A viruses,the current research has been focused on the universal vaccines targeting viral M2,NP and HA proteins.Crystallographic studies have shown that HA forms a trimer embedded on the viral envelope surface,and each monomer consists of a globular head(HA1)and a“rod-like”stalk region(HA2),the latter being more conserved among different HA subtypes and being the primary target for universal vaccines.In this study,we rationally designed the HA head based on the crystal structure of the 2009-pandemic influenza A(H1N1)virus HA as a model,tested its immunogenicity in mice,solved its crystal structure and further examined its immunological characteristics.The results show that the HA globular head can be easily prepared by in vitro refolding in an E.coli expression system,which maintains its intact structure and allows for the stimulation of a strong immune response.Together with recent reports on some similar HA globular head preparations we conclude that structure-based rational design of the HA globular head can be used for subtype-specific vaccines against influenza viruses.