期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向非静态数据分类的演进支持向量机
1
作者 史荧中 王士同 +1 位作者 张景祥 倪彤光 《电子与信息学报》 EI CSCD 北大核心 2013年第6期1413-1420,共8页
时间自适应支持向量机(TA-SVM)方法在处理非静态数据集时表现出良好的性能,但仅根据邻接子分类器相似而获得的相关信息并不充分,由此可能会导致训练所得模型不可靠,限制其应用能力。该文通过定义子分类器序列的相关性衰减函数,提出新的... 时间自适应支持向量机(TA-SVM)方法在处理非静态数据集时表现出良好的性能,但仅根据邻接子分类器相似而获得的相关信息并不充分,由此可能会导致训练所得模型不可靠,限制其应用能力。该文通过定义子分类器序列的相关性衰减函数,提出新的面向非静态数据分类问题的演进支持向量机(Evolving Support VectorMachines,ESVM)。ESVM使用衰变函数以体现子分类器之间的相关程度,通过约束所有子分类器之间的带权差异以求得变化更光滑的子分类器序列,契合了数据中隐藏的渐变概念。在各种数据缓慢变化场景的对比实验中,该文的ESVM方法优于TA-SVM方法。 展开更多
关键词 支持向量机 分类器序列 非静态数据 演进 衰变函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部