Non-invasive tracing in vivo can be used to observe the migration and distnbution of grafted stem cells, and can provide experimental evidence for treatment. This study utilized adenovirus-carrying enhanced green fluo...Non-invasive tracing in vivo can be used to observe the migration and distnbution of grafted stem cells, and can provide experimental evidence for treatment. This study utilized adenovirus-carrying enhanced green fluorescent protein (AD5/F35-eGFP) and superparamagnetic iron oxide (SPIO)-Iabeled bone marrow mesenchymal stem cells (BMSCs). BMSCs, double-labeled by AD5/F35-eGFP and SPIO, were transplanted into rats with spinal cord injury via the subarachnoid space. MRI tracing results demonstrated that BMSCs migrated to the injured spinal cord over time (T2 hypointensity signals). This result was verified by immunofluorescence. These results indicate that MRI can be utilized to trace in vivo the SPIO-labeled BMSCs after grafting.展开更多
基金the National Natural Science Foundation of China,No.81000530, 30973093the Creative Talent Project of Henan Province Health Department, No.2010-4106
文摘Non-invasive tracing in vivo can be used to observe the migration and distnbution of grafted stem cells, and can provide experimental evidence for treatment. This study utilized adenovirus-carrying enhanced green fluorescent protein (AD5/F35-eGFP) and superparamagnetic iron oxide (SPIO)-Iabeled bone marrow mesenchymal stem cells (BMSCs). BMSCs, double-labeled by AD5/F35-eGFP and SPIO, were transplanted into rats with spinal cord injury via the subarachnoid space. MRI tracing results demonstrated that BMSCs migrated to the injured spinal cord over time (T2 hypointensity signals). This result was verified by immunofluorescence. These results indicate that MRI can be utilized to trace in vivo the SPIO-labeled BMSCs after grafting.