The past two decades have witnessed the active development of a rich probability theory of Studentized statistics or self-normalized processes, typified by Student’s t-statistic as introduced by W. S. Gosset more tha...The past two decades have witnessed the active development of a rich probability theory of Studentized statistics or self-normalized processes, typified by Student’s t-statistic as introduced by W. S. Gosset more than a century ago, and their applications to statistical problems in high dimensions, including feature selection and ranking, large-scale multiple testing and sparse, high dimensional signal detection. Many of these applications rely on the robustness property of Studentization/self-normalization against heavy-tailed sampling distributions. This paper gives an overview of the salient progress of self-normalized limit theory, from Student’s t-statistic to more general Studentized nonlinear statistics. Prototypical examples include Studentized one- and two-sample U-statistics. Furthermore, we go beyond independence and glimpse some very recent advances in self-normalized moderate deviations under dependence.展开更多
文摘The past two decades have witnessed the active development of a rich probability theory of Studentized statistics or self-normalized processes, typified by Student’s t-statistic as introduced by W. S. Gosset more than a century ago, and their applications to statistical problems in high dimensions, including feature selection and ranking, large-scale multiple testing and sparse, high dimensional signal detection. Many of these applications rely on the robustness property of Studentization/self-normalization against heavy-tailed sampling distributions. This paper gives an overview of the salient progress of self-normalized limit theory, from Student’s t-statistic to more general Studentized nonlinear statistics. Prototypical examples include Studentized one- and two-sample U-statistics. Furthermore, we go beyond independence and glimpse some very recent advances in self-normalized moderate deviations under dependence.