Efficient and robust solution strategies are developed for discontinuous Galerkin (DG) discretization of the Navier-Stokes (NS) and Reynolds-averaged NS (RANS) equations on structured/unstructured hybrid meshes....Efficient and robust solution strategies are developed for discontinuous Galerkin (DG) discretization of the Navier-Stokes (NS) and Reynolds-averaged NS (RANS) equations on structured/unstructured hybrid meshes. A novel line-implicit scheme is devised and implemented to reduce the memory gain and improve the computational eificiency for highly anisotropic meshes. A simple and effective technique to use the mod- ified Baldwin-Lomax (BL) model on the unstructured meshes for the DC methods is proposed. The compact Hermite weighted essentially non-oscillatory (HWENO) limiters are also investigated for the hybrid meshes to treat solution discontinuities. A variety of compressible viscous flows are performed to examine the capability of the present high- order DG solver. Numerical results indicate that the designed line-implicit algorithms exhibit weak dependence on the cell aspect-ratio as well as the discretization order. The accuracy and robustness of the proposed approaches are demonstrated by capturing com- plex flow structures and giving reliable predictions of benchmark turbulent problems.展开更多
基金Project supported by the National Basic Research Program of China(No.2009CB724104)
文摘Efficient and robust solution strategies are developed for discontinuous Galerkin (DG) discretization of the Navier-Stokes (NS) and Reynolds-averaged NS (RANS) equations on structured/unstructured hybrid meshes. A novel line-implicit scheme is devised and implemented to reduce the memory gain and improve the computational eificiency for highly anisotropic meshes. A simple and effective technique to use the mod- ified Baldwin-Lomax (BL) model on the unstructured meshes for the DC methods is proposed. The compact Hermite weighted essentially non-oscillatory (HWENO) limiters are also investigated for the hybrid meshes to treat solution discontinuities. A variety of compressible viscous flows are performed to examine the capability of the present high- order DG solver. Numerical results indicate that the designed line-implicit algorithms exhibit weak dependence on the cell aspect-ratio as well as the discretization order. The accuracy and robustness of the proposed approaches are demonstrated by capturing com- plex flow structures and giving reliable predictions of benchmark turbulent problems.