Let{X,Xn;n≥1} be a sequence of i,i.d, random variables, E X = 0, E X^2 = σ^2 〈 ∞.Set Sn=X1+X2+…+Xn,Mn=max k≤n│Sk│,n≥1.Let an=O(1/loglogn).In this paper,we prove that,for b〉-1,lim ε→0 →^2(b+1)∑n=1...Let{X,Xn;n≥1} be a sequence of i,i.d, random variables, E X = 0, E X^2 = σ^2 〈 ∞.Set Sn=X1+X2+…+Xn,Mn=max k≤n│Sk│,n≥1.Let an=O(1/loglogn).In this paper,we prove that,for b〉-1,lim ε→0 →^2(b+1)∑n=1^∞ (loglogn)^b/nlogn n^1/2 E{Mn-σ(ε+an)√2nloglogn}+σ2^-b/(b+1)(2b+3)E│N│^2b+3∑k=0^∞ (-1)k/(2k+1)^2b+3 holds if and only if EX=0 and EX^2=σ^2〈∞.展开更多
Let{X_n:n≥1}be a sequence of i.i.d.random variables and let X_n^((r))=X_j if|X_j| is the r-th maximum of |X_1|……|X_n|.Let S_n=X_1+…+X_n and ^(r)S_n=S_n(X_n^(1)+…+X_n^(r)).Sufficient and necessary conditions for ^...Let{X_n:n≥1}be a sequence of i.i.d.random variables and let X_n^((r))=X_j if|X_j| is the r-th maximum of |X_1|……|X_n|.Let S_n=X_1+…+X_n and ^(r)S_n=S_n(X_n^(1)+…+X_n^(r)).Sufficient and necessary conditions for ^(r)S_n approximating to sums of independent normal random variables are obtained.Via approximation results,the convergence rates of the strong law of large numbers for ^(r)S_n are studied.展开更多
The strong approximations of a class of R^d-valued martingales are considered.The conditions usedin this paper are easier to check than those used in [3] and [9].As an application,the strong approximation ofa class of...The strong approximations of a class of R^d-valued martingales are considered.The conditions usedin this paper are easier to check than those used in [3] and [9].As an application,the strong approximation ofa class of non-homogenous Markov chains is established,and the asymptotic properties are established for themulti-treatment Markov chain adaptive designs in clinical trials.展开更多
Let {Xt,t ≥ 1} be a moving average process defined by Xt = ∑^∞ k=0 αkξt-k, where {αk,k ≥ 0} is a sequence of real numbers and {ξt,-∞ 〈 t 〈 ∞} is a doubly infinite sequence of strictly stationary dependen...Let {Xt,t ≥ 1} be a moving average process defined by Xt = ∑^∞ k=0 αkξt-k, where {αk,k ≥ 0} is a sequence of real numbers and {ξt,-∞ 〈 t 〈 ∞} is a doubly infinite sequence of strictly stationary dependent random variables. Under the conditions of {αk, k ≥ 0} which entail that {Xt, t ≥ 1} is either a long memory process or a linear process, the strong approximation of {Xt, t ≥ 1} to a Gaussian process is studied. Finally, the results are applied to obtain the strong approximation of a long memory process to a fractional Brownian motion and the laws of the iterated logarithm for moving average processes.展开更多
Let (X, Xn; n ≥1) be a sequence of i.i.d, random variables taking values in a real separable Hilbert space (H, ||·||) with covariance operator ∑. Set Sn = X1 + X2 + ... + Xn, n≥ 1. We prove that, fo...Let (X, Xn; n ≥1) be a sequence of i.i.d, random variables taking values in a real separable Hilbert space (H, ||·||) with covariance operator ∑. Set Sn = X1 + X2 + ... + Xn, n≥ 1. We prove that, for b 〉 -1, lim ε→0 ε^2(b+1) ∞ ∑n=1 (logn)^b/n^3/2 E{||Sn||-σε√nlogn}=σ^-2(b+1)/(2b+3)(b+1) B||Y|^2b+3holds if EX=0,and E||X||^2(log||x||)^3bv(b+4)〈∞ where Y is a Gaussian random variable taking value in a real separable Hilbert space with mean zero and covariance operator ∑, and σ^2 denotes the largest eigenvalue of ∑.展开更多
In this paper,we derive the strong approximations for a four-class two station multi-class queuing network(Kumar-Seidman network) under a priority service discipline.Within a group,jobs are served in the order of ar...In this paper,we derive the strong approximations for a four-class two station multi-class queuing network(Kumar-Seidman network) under a priority service discipline.Within a group,jobs are served in the order of arrival,that is,a first-in-first-out disciple,and among groups,jobs are served under a pre-emptiveresume priority disciple.We show that if the input data(i.e.,the arrival and service processe) satisfy an approximation(such as the functional law-of-iterated logarithm approximation or the strong approximation),the output data(the departure processes) and the performance measures(such as the queue length,the work load and the sojourn time process) satisfy a similar approximation.展开更多
Strong convergence theorems for approximation of common fixed points of asymptotically Ф-quasi-pseudocontractive mappings and asymptotically C-strictly- pseudocontractive mappings are proved in real Banach spaces by ...Strong convergence theorems for approximation of common fixed points of asymptotically Ф-quasi-pseudocontractive mappings and asymptotically C-strictly- pseudocontractive mappings are proved in real Banach spaces by using a new composite implicit iteration scheme with errors. The results presented in this paper extend and improve the main results of Sun, Gu and Osilike published on J. Math. Anal. Appl.展开更多
Let {X, X1, X2,...} be a strictly stationaryφ-mixing sequence which satisfies EX = 0,EX^2(log2{X})^2〈∞and φ(n)=O(1/log n)^Tfor some T〉2.Let Sn=∑k=1^nXk and an=O(√n/(log2n)^γ for some γ〉1/2.We prove ...Let {X, X1, X2,...} be a strictly stationaryφ-mixing sequence which satisfies EX = 0,EX^2(log2{X})^2〈∞and φ(n)=O(1/log n)^Tfor some T〉2.Let Sn=∑k=1^nXk and an=O(√n/(log2n)^γ for some γ〉1/2.We prove that limε→√2√ε^2-2∑n=3^∞1/nP(|Sn|≥ε√ESn^2log2n+an)=√2.The results of Gut and Spataru (2000) are special cases of ours.展开更多
基金Research supported by National Nature Science Foundation of China:10471126
文摘Let{X,Xn;n≥1} be a sequence of i,i.d, random variables, E X = 0, E X^2 = σ^2 〈 ∞.Set Sn=X1+X2+…+Xn,Mn=max k≤n│Sk│,n≥1.Let an=O(1/loglogn).In this paper,we prove that,for b〉-1,lim ε→0 →^2(b+1)∑n=1^∞ (loglogn)^b/nlogn n^1/2 E{Mn-σ(ε+an)√2nloglogn}+σ2^-b/(b+1)(2b+3)E│N│^2b+3∑k=0^∞ (-1)k/(2k+1)^2b+3 holds if and only if EX=0 and EX^2=σ^2〈∞.
基金Project Supported by NSFC (10131040)SRFDP (2002335090)
文摘A law of iterated logarithm for R/S statistics with the help of the strong approximations of R/S statistics by functions of a Wiener process is shown.
基金Supported by National Natural Science Foundation of China(No.10071072)
文摘Let{X_n:n≥1}be a sequence of i.i.d.random variables and let X_n^((r))=X_j if|X_j| is the r-th maximum of |X_1|……|X_n|.Let S_n=X_1+…+X_n and ^(r)S_n=S_n(X_n^(1)+…+X_n^(r)).Sufficient and necessary conditions for ^(r)S_n approximating to sums of independent normal random variables are obtained.Via approximation results,the convergence rates of the strong law of large numbers for ^(r)S_n are studied.
基金Supported by The National Natural Science Foundation of China (No.10071072)
文摘The strong approximations of a class of R^d-valued martingales are considered.The conditions usedin this paper are easier to check than those used in [3] and [9].As an application,the strong approximation ofa class of non-homogenous Markov chains is established,and the asymptotic properties are established for themulti-treatment Markov chain adaptive designs in clinical trials.
文摘Let {Xt,t ≥ 1} be a moving average process defined by Xt = ∑^∞ k=0 αkξt-k, where {αk,k ≥ 0} is a sequence of real numbers and {ξt,-∞ 〈 t 〈 ∞} is a doubly infinite sequence of strictly stationary dependent random variables. Under the conditions of {αk, k ≥ 0} which entail that {Xt, t ≥ 1} is either a long memory process or a linear process, the strong approximation of {Xt, t ≥ 1} to a Gaussian process is studied. Finally, the results are applied to obtain the strong approximation of a long memory process to a fractional Brownian motion and the laws of the iterated logarithm for moving average processes.
基金supported by National Natural Science Foundation of China (No.10771192 70871103)
文摘Let (X, Xn; n ≥1) be a sequence of i.i.d, random variables taking values in a real separable Hilbert space (H, ||·||) with covariance operator ∑. Set Sn = X1 + X2 + ... + Xn, n≥ 1. We prove that, for b 〉 -1, lim ε→0 ε^2(b+1) ∞ ∑n=1 (logn)^b/n^3/2 E{||Sn||-σε√nlogn}=σ^-2(b+1)/(2b+3)(b+1) B||Y|^2b+3holds if EX=0,and E||X||^2(log||x||)^3bv(b+4)〈∞ where Y is a Gaussian random variable taking value in a real separable Hilbert space with mean zero and covariance operator ∑, and σ^2 denotes the largest eigenvalue of ∑.
文摘In this paper,we derive the strong approximations for a four-class two station multi-class queuing network(Kumar-Seidman network) under a priority service discipline.Within a group,jobs are served in the order of arrival,that is,a first-in-first-out disciple,and among groups,jobs are served under a pre-emptiveresume priority disciple.We show that if the input data(i.e.,the arrival and service processe) satisfy an approximation(such as the functional law-of-iterated logarithm approximation or the strong approximation),the output data(the departure processes) and the performance measures(such as the queue length,the work load and the sojourn time process) satisfy a similar approximation.
文摘Strong convergence theorems for approximation of common fixed points of asymptotically Ф-quasi-pseudocontractive mappings and asymptotically C-strictly- pseudocontractive mappings are proved in real Banach spaces by using a new composite implicit iteration scheme with errors. The results presented in this paper extend and improve the main results of Sun, Gu and Osilike published on J. Math. Anal. Appl.
基金National Natural Science Foundation of China (No.10571159)
文摘Let {X, X1, X2,...} be a strictly stationaryφ-mixing sequence which satisfies EX = 0,EX^2(log2{X})^2〈∞and φ(n)=O(1/log n)^Tfor some T〉2.Let Sn=∑k=1^nXk and an=O(√n/(log2n)^γ for some γ〉1/2.We prove that limε→√2√ε^2-2∑n=3^∞1/nP(|Sn|≥ε√ESn^2log2n+an)=√2.The results of Gut and Spataru (2000) are special cases of ours.