Redox state constitutes an important background of numerous liver disorders. The redox state participates in the course of inflammatory, metabolic and proliferative liver diseases. Reactive oxygen species(ROS) are pri...Redox state constitutes an important background of numerous liver disorders. The redox state participates in the course of inflammatory, metabolic and proliferative liver diseases. Reactive oxygen species(ROS) are primarily produced in the mitochondria and in the endoplasmic reticulum of hepatocytes via the cytochrome P450 enzymes. Under the proper conditions, cells are equipped with special molecular strategies that control the level of oxidative stress and maintain a balance between oxidant and antioxidant particles. Oxidative stress represents an imbalance between oxidant and antioxidant agents. Hepatocytic proteins, lipids and DNA are among the cellular structures that are primarily affected by ROS and reactive nitrogen species. The process results in structural and functional abnormalities in the liver. Thus, the phenomenon of oxidative stress should be investigated for several reasons. First, it may explain the pathogenesis of various liver disorders. Moreover, monitoring oxidative markers among hepatocytes offers the potential to diagnose the degree of liver damage and ultimately to observe the response to pharmacological therapies. The present report focuses on the role of oxidative stress in selected liver diseases.展开更多
The Sino-Mongolian border areas underwent two important tectonic events during Mesozoic time after late Paleozoic orogeny: a late Triassic to earlier Jurassic contractional event that resulted in a large-scale south-v...The Sino-Mongolian border areas underwent two important tectonic events during Mesozoic time after late Paleozoic orogeny: a late Triassic to earlier Jurassic contractional event that resulted in a large-scale south-vergent thrust during the orogeny and a late Jurassic-earlier Cretaceous extensional event in a north-south direction that formed a metamorphic core complex. The kinematic and dynamic analyses show that the thrust sheet moved southwards with a kinematic vorticity number of ca. -0.10 and sub-horizontal maximum compressive stress axis that belongs to a contraction-thickening shear. The upper plate of the late-orogenic detachment relatively moved in a 165°direction. The average kinematic vorticity in its earlier stage was 0.74 that belongs to simple shear dominated shearing and related to the maximum compressive stress axes dipping at ~66°, while the later average kinematic vorticity was ~0.55°that belongs to pure shear dominated shearing with sub-vertical maximum compressive stress axes. This suggests that the thrusting led to the crust thickened and the lower plate rocks that were originally located in the upper crust depressed through a brittle-ductile transition zone into the lower crust and became warmer. The heated rocks trended to uplift since their increasing volume and decreasing density while the loading of the upper-plate rocks increased due to the structural thickening. Under the combined effect of the loading and the thermal-uplifting, the ductile shear zone in between increased in its component of vertical pure shear. Once its pure-shear component exceeded its simple-shear one the ductile shear zone became an extension-thinned shear zone. This progressive transitional process reflects internal and essential temporal and spatial relationships: the extensional factor nucleated during the crust thickening by thrusting and increase of the extensional factor finally led to late-orogenic collapse.展开更多
文摘Redox state constitutes an important background of numerous liver disorders. The redox state participates in the course of inflammatory, metabolic and proliferative liver diseases. Reactive oxygen species(ROS) are primarily produced in the mitochondria and in the endoplasmic reticulum of hepatocytes via the cytochrome P450 enzymes. Under the proper conditions, cells are equipped with special molecular strategies that control the level of oxidative stress and maintain a balance between oxidant and antioxidant particles. Oxidative stress represents an imbalance between oxidant and antioxidant agents. Hepatocytic proteins, lipids and DNA are among the cellular structures that are primarily affected by ROS and reactive nitrogen species. The process results in structural and functional abnormalities in the liver. Thus, the phenomenon of oxidative stress should be investigated for several reasons. First, it may explain the pathogenesis of various liver disorders. Moreover, monitoring oxidative markers among hepatocytes offers the potential to diagnose the degree of liver damage and ultimately to observe the response to pharmacological therapies. The present report focuses on the role of oxidative stress in selected liver diseases.
基金the National Natural Science Foundation of China(Grant No.40272084 , 40472101) the Research Fund for Doctoral Program of High Education(Grant No.2000000128).
文摘The Sino-Mongolian border areas underwent two important tectonic events during Mesozoic time after late Paleozoic orogeny: a late Triassic to earlier Jurassic contractional event that resulted in a large-scale south-vergent thrust during the orogeny and a late Jurassic-earlier Cretaceous extensional event in a north-south direction that formed a metamorphic core complex. The kinematic and dynamic analyses show that the thrust sheet moved southwards with a kinematic vorticity number of ca. -0.10 and sub-horizontal maximum compressive stress axis that belongs to a contraction-thickening shear. The upper plate of the late-orogenic detachment relatively moved in a 165°direction. The average kinematic vorticity in its earlier stage was 0.74 that belongs to simple shear dominated shearing and related to the maximum compressive stress axes dipping at ~66°, while the later average kinematic vorticity was ~0.55°that belongs to pure shear dominated shearing with sub-vertical maximum compressive stress axes. This suggests that the thrusting led to the crust thickened and the lower plate rocks that were originally located in the upper crust depressed through a brittle-ductile transition zone into the lower crust and became warmer. The heated rocks trended to uplift since their increasing volume and decreasing density while the loading of the upper-plate rocks increased due to the structural thickening. Under the combined effect of the loading and the thermal-uplifting, the ductile shear zone in between increased in its component of vertical pure shear. Once its pure-shear component exceeded its simple-shear one the ductile shear zone became an extension-thinned shear zone. This progressive transitional process reflects internal and essential temporal and spatial relationships: the extensional factor nucleated during the crust thickening by thrusting and increase of the extensional factor finally led to late-orogenic collapse.