期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Study on the wind field and pollutant dispersion in street canyons using a stable numerical method
1
作者 Dennis Y.C. LEUNG 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第3期488-490,共3页
A stable finite element method for the time dependent Navier-Stokes equations was used for studying the wind flow and pollutant dispersion within street canyons. A three-step fractional method was used to solve the ve... A stable finite element method for the time dependent Navier-Stokes equations was used for studying the wind flow and pollutant dispersion within street canyons. A three-step fractional method was used to solve the velocity field and the pressure field separately from the governing equations. The Streamline Upwind Petrov-Galerkin(SUPG) method was used to get stable numerical results. Numerical oscillation was minimized and satisfactory results can be obtained for flows at high Reynolds numbers. Simulating the flow over a square cylinder within a wide range of Reynolds numbers validates the wind field model. The Strouhal numbers obtained from the numerical simulation had a good agreement with those obtained from experiment. The wind field model developed in the present study is applied to simulate more complex flow phenomena in street canyons with two different building configurations. The results indicated that the flow at rooftop of buildings might not be assumed parallel to the ground as some numerical modelers did. A counter-clockwise rotating vortex may be found in street canyons with an inflow from the left to right. In addition, increasing building height can increase velocity fluctuations in the street canyon under certain circumstances, which facilitate pollutant dispersion. At high Reynolds numbers, the flow regimes in street canyons do not change with inflow velocity. 展开更多
关键词 finite element method streamline upwind petrov-galerkin method three-step fractional method
下载PDF
线性定常对流占优对流扩散问题的无网格解法 被引量:9
2
作者 张小华 欧阳洁 《力学季刊》 CSCD 北大核心 2006年第2期220-226,共7页
应用无网格Galerkin方法求解对流占优对流扩散问题时会出现非物理现象的数值伪振荡,本文将SUPG方法、GLS方法、SGS方法与无网格Galerkin方法相耦合,成功解决了对流扩散方程中对流项占优时的数值伪振荡问题。运用本文构造的方法,采用线... 应用无网格Galerkin方法求解对流占优对流扩散问题时会出现非物理现象的数值伪振荡,本文将SUPG方法、GLS方法、SGS方法与无网格Galerkin方法相耦合,成功解决了对流扩散方程中对流项占优时的数值伪振荡问题。运用本文构造的方法,采用线性基和具有C2连续的权函数,应用移动最小二乘法可容易地构造高阶导数连续的形函数,从而避免了有限元方法中当采用线性元插值时,因忽略稳定项中二阶导数项而降低计算精度和稳定性的问题。数值实验表明:本文构造的方法具有计算精度高、稳定性好、计算算法实施简单、前后处理方便的优点,这些方法不仅能适用于对流项占优问题,而且也能很好地消除反应项占优时的数值伪振荡问题。 展开更多
关键词 对流扩散方程 无网格方法 SUPG GLS SGS
下载PDF
用于三维非均质流场计算的改进流线迎风Petrov-Galerkin(SUPG)方法 被引量:1
3
作者 苏波 韩向科 《西安交通大学学报》 EI CAS CSCD 北大核心 2014年第3期128-134,共7页
在流线迎风Petrov-Galerkin(SUPG)稳定有限元方法基础上,通过引入双时间步法和变量分裂算法,发展了一种可用于三维非均质流场计算的改进SUPG方法。该方法摒弃了传统不可压缩流动问题中密度为常数的假定,采用包含密度输运方程的流体运动... 在流线迎风Petrov-Galerkin(SUPG)稳定有限元方法基础上,通过引入双时间步法和变量分裂算法,发展了一种可用于三维非均质流场计算的改进SUPG方法。该方法摒弃了传统不可压缩流动问题中密度为常数的假定,采用包含密度输运方程的流体运动控制方程;基于变量分裂算法,速度、压强场采用同阶插值函数进行空间离散,使改进SUPG方法具有简明的有限元格式,同时对速度场、压强场进行迭代求解,以降低线性代数方程组的阶数。双时间步法的引入,有利于提高SUPG方法对复杂非定常问题的求解效率。采用该方法对非均质、非定常三维矩形管道重力作用下的自由流动问题进行了分析,研究了重力作用下两种不同密度液体的相对运动过程。计算分析表明:在采用较大时间步的情况下,速度场和压强场在整个流动过程中随时间平稳过渡且分布光滑,没有出现数值波动现象;旋涡位置及其随时间变化的规律与经典文献结果相符,没有出现跳跃和不连续现象。算例分析表明,改进SUPG方法具有良好的计算精度及数值稳定性,可用于三维非均质流动类似问题的研究。 展开更多
关键词 不可压流动 有限元法 分裂算法 流线迎风
下载PDF
非饱和流动问题的SUPG有限元数值解法 被引量:21
4
作者 朱学愚 谢春红 钱孝星 《水利学报》 EI CSCD 北大核心 1994年第6期37-42,共6页
本文将SUPG(Streamlineupwind/Petrov—Galerkin)有限元方法应用于非饱和流动的Richards方程,导出了数值表达式,并且对一维入渗问题进行了数值计算.计算的结果表明:本文的方法是精确... 本文将SUPG(Streamlineupwind/Petrov—Galerkin)有限元方法应用于非饱和流动的Richards方程,导出了数值表达式,并且对一维入渗问题进行了数值计算.计算的结果表明:本文的方法是精确、收敛和稳定的,可用于非饱和带水分运动的实际计算. 展开更多
关键词 非饱和流 有限单元法 数值解
下载PDF
旋转轴唇形密封泵吸率的有限元数值分析 被引量:9
5
作者 江华生 彭旭东 +1 位作者 孟祥铠 沈明学 《上海交通大学学报》 EI CAS CSCD 北大核心 2014年第8期1194-1199,共6页
为准确预测旋转轴唇形密封的泵吸率,采用JFO空化边界条件,建立了遵循质量守恒的唇形密封的稳态润滑数学模型;采用流线迎风有限单元法求解润滑控制方程,分析了唇形密封操作参数和表面微条纹结构参数对泵吸率的影响规律.结果表明:泵吸率... 为准确预测旋转轴唇形密封的泵吸率,采用JFO空化边界条件,建立了遵循质量守恒的唇形密封的稳态润滑数学模型;采用流线迎风有限单元法求解润滑控制方程,分析了唇形密封操作参数和表面微条纹结构参数对泵吸率的影响规律.结果表明:泵吸率随转轴速度增加而增加,而随密封压力增加而减小,甚至转变为泄漏率;泵吸率随微条纹的周向波度、周向波长、最大周向变形的增大而增加,而随微条纹的轴向波度的增大而减小;微条纹最大周向变形位置靠近油侧时,唇形密封才具有泵吸作用,且越靠近油侧,泵吸率越大. 展开更多
关键词 唇形密封 泵吸率 JFO空化 流线迎风 有限元法
下载PDF
THE p-VERSION OF FINITE ELEMENT METHODS FOR STEADY VISCOELASTIC FLOWS BETWEEN ECCENTRIC ROTATING CYLINDERS 被引量:4
6
作者 Lu Zhu min Department of Mechanics, Zhejiang University, Hangzhou 310027, P.R.China Wang Lin xiang State Key Laboratory for Fluid Power Transmission & Control, Zhejiang University, Hangzhou 310027, P.R.China Fan Yu run Department of Mechanics, 《Journal of Hydrodynamics》 SCIE EI CSCD 1999年第3期19-26,共8页
The steady state, two dimensional creeping flow of an upper convected Maxwell (UCM) fluid between two eccentric cylinders, with the inner one rotating,is computed by p version of EVSS/SUPG finite element method. T... The steady state, two dimensional creeping flow of an upper convected Maxwell (UCM) fluid between two eccentric cylinders, with the inner one rotating,is computed by p version of EVSS/SUPG finite element method. The solutions converge as the polynomial order of the approximation increases. An upper Deborah number (De) limit attains 30 (p≤5). With De increasing, The boundary layers form and develop in the stress, which match closely with those predicted by asymptotic analysis. The results show that numerical oscillations is caused by the boundary layers of stress and can be reduced by increasing the polynomial order of the approximation. 展开更多
关键词 streamline upwind petrov galerkin (SUPG) formulation elastic viscous split stress (EVSS) method viscoelastic flows ECCENTRIC cylinders
原文传递
SUPG finite element method based on penalty function for lid-driven cavity flow up to Re = 27500 被引量:1
7
作者 Da-Guo Wang Qing-Xiang Shui 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第1期54-63,共10页
A streamline upwind/Petrov-Galerkin (SUPG) finite element method based on a penalty function is pro- posed for steady incompressible Navier-Stokes equations. The SUPG stabilization technique is employed for the for-... A streamline upwind/Petrov-Galerkin (SUPG) finite element method based on a penalty function is pro- posed for steady incompressible Navier-Stokes equations. The SUPG stabilization technique is employed for the for- mulation of momentum equations. Using the penalty function method, the continuity equation is simplified and the pres- sure of the momentum equations is eliminated. The lid-driven cavity flow problem is solved using the present model. It is shown that steady flow simulations are computable up to Re = 27500, and the present results agree well with previous solutions. Tabulated results for the properties of the primary vortex are also provided for benchmarking purposes. 展开更多
关键词 streamline upwind/petrov-galerkin (SUPG)finite element method Lid-driven cavity flow Penaltyfunction method High Reynolds number
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部