The effect of predeformation manner, predeformation ratio and isothermal heat-treat parameter on the non-dendrite structure of AZ61 magnesium alloy in SIMA process was studied. Under coequal heat-treat condition, the ...The effect of predeformation manner, predeformation ratio and isothermal heat-treat parameter on the non-dendrite structure of AZ61 magnesium alloy in SIMA process was studied. Under coequal heat-treat condition, the impact of the hot upsetting pre- deformation on semi-solid microstructure in SIMA process was compared with that of the cold compressive predeformation. The results indicate that non-dendrite microstructure in AZ61 magnesium alloy billets can be obtained by hot or cold upsetting predeformation in SIMA process, although their mechanisms of evolution are different. Increasing hot or cold upsetting predeformation ratio can enhance the effect and quality of the non-dendrite microstructure formed before storage energy up to saturation, but the proper isothermal temperature and holding time should be selected.展开更多
Based on SIMA, the Al-Si alloy semi-solid billets were successfully fabricated by means of strain inducement and isothermal treatment for AlSi9Mg poured in the range of near-liquidus. Through orthogonal test, the effe...Based on SIMA, the Al-Si alloy semi-solid billets were successfully fabricated by means of strain inducement and isothermal treatment for AlSi9Mg poured in the range of near-liquidus. Through orthogonal test, the effects of combination action of near-liquidus casting, strain inducement and isothermal treatment on the morphology of primaryα-Al phase of AlSi9Mg close to eutectic point were investigated, and the optimal match relation between the processing parameters of solidification, deformation parameters of strain inducement, processing parameters of isothermal treatment and microstructure parameters of semi-solid alloy was established. The results indicate that compared with the single near-liquidus casting or SIMA, the microstructure of primaryα-Al phase in AlSi9Mg alloy prepared by compound fabrication process is more homogeneous, with more globular and finer particles, which has average grain size of 40-50 urn and shape factor of greater than 0.75. After holding at 605℃for 30-40 min under a certain cooling rate, increased deformation volume in SIMA benefits the refinement of the grain and the improvement of the morphology for primary phase.展开更多
基金This work was financially supported by the National Natural Science Foundation of China (No.50465003).
文摘The effect of predeformation manner, predeformation ratio and isothermal heat-treat parameter on the non-dendrite structure of AZ61 magnesium alloy in SIMA process was studied. Under coequal heat-treat condition, the impact of the hot upsetting pre- deformation on semi-solid microstructure in SIMA process was compared with that of the cold compressive predeformation. The results indicate that non-dendrite microstructure in AZ61 magnesium alloy billets can be obtained by hot or cold upsetting predeformation in SIMA process, although their mechanisms of evolution are different. Increasing hot or cold upsetting predeformation ratio can enhance the effect and quality of the non-dendrite microstructure formed before storage energy up to saturation, but the proper isothermal temperature and holding time should be selected.
基金Project(04044058) supported by the Excellent Youths Science and Technology Foundation of Anhui, China
文摘Based on SIMA, the Al-Si alloy semi-solid billets were successfully fabricated by means of strain inducement and isothermal treatment for AlSi9Mg poured in the range of near-liquidus. Through orthogonal test, the effects of combination action of near-liquidus casting, strain inducement and isothermal treatment on the morphology of primaryα-Al phase of AlSi9Mg close to eutectic point were investigated, and the optimal match relation between the processing parameters of solidification, deformation parameters of strain inducement, processing parameters of isothermal treatment and microstructure parameters of semi-solid alloy was established. The results indicate that compared with the single near-liquidus casting or SIMA, the microstructure of primaryα-Al phase in AlSi9Mg alloy prepared by compound fabrication process is more homogeneous, with more globular and finer particles, which has average grain size of 40-50 urn and shape factor of greater than 0.75. After holding at 605℃for 30-40 min under a certain cooling rate, increased deformation volume in SIMA benefits the refinement of the grain and the improvement of the morphology for primary phase.