Dynamic response analysis of damper connected adjacent multi-story structures with uncertain parameters is carried out.A formula of the multi degree of freedom(MDOF) for the structure-damper system with stochastic par...Dynamic response analysis of damper connected adjacent multi-story structures with uncertain parameters is carried out.A formula of the multi degree of freedom(MDOF) for the structure-damper system with stochastic parameters is derived.The uncertainties of mass and stiffness are taken into consideration firstly.The ground acceleration is represented by Kanai-Tajimi filtered non-stationary process.The mean square random responses of structural displacement and story drift are chosen as the optimization objective.The variations of mean square responses of top floor displacements and bottom story drifts in neighboring structures with the damper stiffness and damping coefficient are analyzed in detail.Through the parametric study,the acquiring optimum parameters of damper are regarded as numerical results.Then,a reducing order model of the MDOF system for adjacent structures with mean parameters is presented.The explicit expressions for determining optimal parameters of Kelvin model-defined damper which is used to connect adjacent single degree of freedom(SDOF) structures subjected to a white-noise excitation are employed to achieve the appropriate damper parameters,which are called theory results.Through a comparative study,it can be found that the theory values of damper parameters are consistent with the results based on extensive parametric studies.The analytical results can be obtained by using the first natural frequencies and the total mass of the adjacent deterministic structures with mean parameters.The analytical formulas can be used to find appropriate parameters of damper between adjacent structures for engineering applications.The performance of damper is investigated on the basis of mitigations of mean square random responses of inter-story drifts,displacements and accelerations in adjacent structures.The numerical results demonstrate the robustness of coupled building control strategies.展开更多
With dynamic reliability problems of stochastic parameters,supercavity vehicle is subject to impact loads.The supercavity vehicle is modeled by using eight-node super-parametric shell elements.The tail impact loads of...With dynamic reliability problems of stochastic parameters,supercavity vehicle is subject to impact loads.The supercavity vehicle is modeled by using eight-node super-parametric shell elements.The tail impact loads of supercavity vehicle structures are simplified into two stationary random processes with a certain phase difference,and the random excitations are transformed into sinusoidal ones in terms of the pseudo excitation method.The stress response of stochastic structure can be obtained through combining Newmark method with pseudo excitation perturbation method,and then all required digital features for dynamic reliability of supercavity vehicle have be calculated.The expressions of the mean value and the variance of dynamic reliability of supercavity vehicle with stochastic parameters are educed on the basis of the Poisson formula of calculating dynamic reliability.Finally,the influence of the randomness of structural parameters on the dynamic reliability is analyzed.And the feasibility and availability of this method were validated by comparing with the Monte Carlo method.展开更多
基金supported by the National Natural Science Foundation of China (No. 50778077)the National Science Foundation for Distinguished Young Scholars of China (No. 50925828)
文摘Dynamic response analysis of damper connected adjacent multi-story structures with uncertain parameters is carried out.A formula of the multi degree of freedom(MDOF) for the structure-damper system with stochastic parameters is derived.The uncertainties of mass and stiffness are taken into consideration firstly.The ground acceleration is represented by Kanai-Tajimi filtered non-stationary process.The mean square random responses of structural displacement and story drift are chosen as the optimization objective.The variations of mean square responses of top floor displacements and bottom story drifts in neighboring structures with the damper stiffness and damping coefficient are analyzed in detail.Through the parametric study,the acquiring optimum parameters of damper are regarded as numerical results.Then,a reducing order model of the MDOF system for adjacent structures with mean parameters is presented.The explicit expressions for determining optimal parameters of Kelvin model-defined damper which is used to connect adjacent single degree of freedom(SDOF) structures subjected to a white-noise excitation are employed to achieve the appropriate damper parameters,which are called theory results.Through a comparative study,it can be found that the theory values of damper parameters are consistent with the results based on extensive parametric studies.The analytical results can be obtained by using the first natural frequencies and the total mass of the adjacent deterministic structures with mean parameters.The analytical formulas can be used to find appropriate parameters of damper between adjacent structures for engineering applications.The performance of damper is investigated on the basis of mitigations of mean square random responses of inter-story drifts,displacements and accelerations in adjacent structures.The numerical results demonstrate the robustness of coupled building control strategies.
文摘With dynamic reliability problems of stochastic parameters,supercavity vehicle is subject to impact loads.The supercavity vehicle is modeled by using eight-node super-parametric shell elements.The tail impact loads of supercavity vehicle structures are simplified into two stationary random processes with a certain phase difference,and the random excitations are transformed into sinusoidal ones in terms of the pseudo excitation method.The stress response of stochastic structure can be obtained through combining Newmark method with pseudo excitation perturbation method,and then all required digital features for dynamic reliability of supercavity vehicle have be calculated.The expressions of the mean value and the variance of dynamic reliability of supercavity vehicle with stochastic parameters are educed on the basis of the Poisson formula of calculating dynamic reliability.Finally,the influence of the randomness of structural parameters on the dynamic reliability is analyzed.And the feasibility and availability of this method were validated by comparing with the Monte Carlo method.