Freeze-thaw damage is the most common disease of semi-rigid bases in cold regions, which may greatly affect the dura- bility of roadways. In this study, the compressive strength and frost resistance of four different ...Freeze-thaw damage is the most common disease of semi-rigid bases in cold regions, which may greatly affect the dura- bility of roadways. In this study, the compressive strength and frost resistance of four different types of semi-rigid bases (lime-fly ash-stabilized sand, cement-stabilized sand, lime-fly ash-stabilized gravel, and cement-stabilized gravel) are assessed by varying the materials content. Based on freeze-thaw and compressive strength tests, this paper presents the performance of the different materials, each having different physical properties, and the optimal amounts of materials contents are proposed.展开更多
Steel slag is characterized by high strength,good wear resistance and micro-expansion.This study aims at exploring the potential of steel slag in cement stabilized aggregates,mainly including mechanical properties,shr...Steel slag is characterized by high strength,good wear resistance and micro-expansion.This study aims at exploring the potential of steel slag in cement stabilized aggregates,mainly including mechanical properties,shrinkage and compensation mechanisms.For this purpose,the compressive strength and compressive resilient modulus of cement stabilized aggregates with different steel slag contents(CSMS)were initially investigated.Subsequently,the effects of steel slag and cement on dry shrinkage,temperature shrinkage,and total shrinkage were analyzed through a series of shrinkage test designs.Additionally,in combination with X-ray diffraction(XRD)and Scanning electron microscope(SEM),the characteristic peaks and microscopic images of cement,steel slag and cement-steel slag at different hydration ages were analyzed to identify the chemical substances causing the expansion volume of steel slag and reveal the compensation mechanism of CSMS.The results show that the introduction of 20%steel slag improved the mechanical properties of CSMS by 16.7%,reduced dry shrinkage by 21%,increased temperature shrinkage by 5.8%and reduced its total shrinkage by 19.2%.Compared with the hydration reaction of cement alone,the composite hydration reaction of steel slag with cement does not produce new hydrates.Furthermore,it is noteworthy that the volume expansion of the f-CaO hydration reaction in steel slag can compensate for the volume shrinkage of cement-stabilized macadam.This research can provide a solid theoretical basis for the application and promotion of steel slag in cement-stabilized macadam and reduce the possibility of shrinkage cracking.展开更多
Superabsorbent polymers(SAPs)are cross-linked polymers that can absorb and retain large amounts of water.In recent years,a growing interest was seen in applying SAPs in concrete to improve its performance due to its e...Superabsorbent polymers(SAPs)are cross-linked polymers that can absorb and retain large amounts of water.In recent years,a growing interest was seen in applying SAPs in concrete to improve its performance due to its efficiency in mitigating shrinkage.This paper presents findings in a study on effect of SAPs on performance of cement-treated base(CTB),using the experience of internal curing of concrete.CTB specimens with and without SAPs were prepared and tested in the laboratory.Tests conducted include mechanical property testing,dry shrinkage testing,differential thermal analysis,mercury intrusion porosimetry and scanning electron microscope testing.It was found that 7-day and 28-day unconfined compressive strength of CTB specimens with SAPs was higher than regular CTB specimens.28d compressive strength of CTB specimens with SAPs made by Static pressure method was 5.87 MPa,which is 27%higher than that of regular CTB specimens.Drying shrinkage of CTB specimens with SAPs was decreased by 52.5%comparing with regular CTB specimens.Through the microstructure analysis it was found that CTB specimens with SAPs could produce more hydration products,which is also the reason for the strength improvement.展开更多
Cement-stabilized soil bases have been widely used in expressways due to its high strength,appropriate stiffness,good water resistance,and frost resistance.So far,the structural characteristics and mechanical behavior...Cement-stabilized soil bases have been widely used in expressways due to its high strength,appropriate stiffness,good water resistance,and frost resistance.So far,the structural characteristics and mechanical behaviors of cement-stabilized soil bases were not investigated so much.In this paper,the 3D elastic-plastic finite element method(FEM)was used to analyze the mechanical behaviors and structural characteristics of cementstabilized soil bases from construction to operation.The pavement filling and the traffic loading processes were simulated,and a contact model was used to simulate the contact behavior between each layer of the pavement.Considering the construction process,the structural characteristics and mechanical behaviors of cementstabilized soil bases were studied under asphalt-concrete pavement conditions.Furthermore,the general rules of deformations and stresses in cement-stabilized soil bases under different conditions were discussed,and some suggestions were put forward for the design and construction of cement-stabilized soil bases.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 51378057 and 41371081)
文摘Freeze-thaw damage is the most common disease of semi-rigid bases in cold regions, which may greatly affect the dura- bility of roadways. In this study, the compressive strength and frost resistance of four different types of semi-rigid bases (lime-fly ash-stabilized sand, cement-stabilized sand, lime-fly ash-stabilized gravel, and cement-stabilized gravel) are assessed by varying the materials content. Based on freeze-thaw and compressive strength tests, this paper presents the performance of the different materials, each having different physical properties, and the optimal amounts of materials contents are proposed.
基金National Natural Science Foundation of China(Grant No.52078051)Fundamental Research Funds for the Central Universities(Grant No.310821163502)+1 种基金Technology Innovation Project of Shandong Department of Industry and Information(Grant No.Lugongxinji 2020-8)the Transportation Department of Shandong Province(Grant No.Lujiaokeji 2017-28).
文摘Steel slag is characterized by high strength,good wear resistance and micro-expansion.This study aims at exploring the potential of steel slag in cement stabilized aggregates,mainly including mechanical properties,shrinkage and compensation mechanisms.For this purpose,the compressive strength and compressive resilient modulus of cement stabilized aggregates with different steel slag contents(CSMS)were initially investigated.Subsequently,the effects of steel slag and cement on dry shrinkage,temperature shrinkage,and total shrinkage were analyzed through a series of shrinkage test designs.Additionally,in combination with X-ray diffraction(XRD)and Scanning electron microscope(SEM),the characteristic peaks and microscopic images of cement,steel slag and cement-steel slag at different hydration ages were analyzed to identify the chemical substances causing the expansion volume of steel slag and reveal the compensation mechanism of CSMS.The results show that the introduction of 20%steel slag improved the mechanical properties of CSMS by 16.7%,reduced dry shrinkage by 21%,increased temperature shrinkage by 5.8%and reduced its total shrinkage by 19.2%.Compared with the hydration reaction of cement alone,the composite hydration reaction of steel slag with cement does not produce new hydrates.Furthermore,it is noteworthy that the volume expansion of the f-CaO hydration reaction in steel slag can compensate for the volume shrinkage of cement-stabilized macadam.This research can provide a solid theoretical basis for the application and promotion of steel slag in cement-stabilized macadam and reduce the possibility of shrinkage cracking.
基金funded by the International Cooperation Project of Jiangsu Science and Technology Department[Grant No.BZ2017011].
文摘Superabsorbent polymers(SAPs)are cross-linked polymers that can absorb and retain large amounts of water.In recent years,a growing interest was seen in applying SAPs in concrete to improve its performance due to its efficiency in mitigating shrinkage.This paper presents findings in a study on effect of SAPs on performance of cement-treated base(CTB),using the experience of internal curing of concrete.CTB specimens with and without SAPs were prepared and tested in the laboratory.Tests conducted include mechanical property testing,dry shrinkage testing,differential thermal analysis,mercury intrusion porosimetry and scanning electron microscope testing.It was found that 7-day and 28-day unconfined compressive strength of CTB specimens with SAPs was higher than regular CTB specimens.28d compressive strength of CTB specimens with SAPs made by Static pressure method was 5.87 MPa,which is 27%higher than that of regular CTB specimens.Drying shrinkage of CTB specimens with SAPs was decreased by 52.5%comparing with regular CTB specimens.Through the microstructure analysis it was found that CTB specimens with SAPs could produce more hydration products,which is also the reason for the strength improvement.
文摘Cement-stabilized soil bases have been widely used in expressways due to its high strength,appropriate stiffness,good water resistance,and frost resistance.So far,the structural characteristics and mechanical behaviors of cement-stabilized soil bases were not investigated so much.In this paper,the 3D elastic-plastic finite element method(FEM)was used to analyze the mechanical behaviors and structural characteristics of cementstabilized soil bases from construction to operation.The pavement filling and the traffic loading processes were simulated,and a contact model was used to simulate the contact behavior between each layer of the pavement.Considering the construction process,the structural characteristics and mechanical behaviors of cementstabilized soil bases were studied under asphalt-concrete pavement conditions.Furthermore,the general rules of deformations and stresses in cement-stabilized soil bases under different conditions were discussed,and some suggestions were put forward for the design and construction of cement-stabilized soil bases.