An effective spot beam handover trigger and channel allocation scheme is proposed for GEO mobile satellite communication based on its characteristic and application. By using both signal strength and terminal location...An effective spot beam handover trigger and channel allocation scheme is proposed for GEO mobile satellite communication based on its characteristic and application. By using both signal strength and terminal location information, necessary handover is triggered promptly and accurately to reduce the negative effect of long signaling delay. Then handover decision is made with the handover queuing and channel allocation strategy. An adaptive channel resource allocation scheme is considered to optimize resource utilization with guarantee of emergency communication, which is significant for emergency rescue and disaster relief. Simulation results show that the proposed scheme prevents unnecessary handover effectively and has favorable adaptability to emergent requirement of satellite communication.展开更多
The three-dimensional (3D) spot-scanning method is one of the most commonly used irradiation methods in charged particle beam radiotherapy. Generally, spot-scanning beam delivery utilizes the same size pencil beam t...The three-dimensional (3D) spot-scanning method is one of the most commonly used irradiation methods in charged particle beam radiotherapy. Generally, spot-scanning beam delivery utilizes the same size pencil beam to irradiate the tumor targets. Here we propose a spot-scanning beam delivery method with laterally- and longitudinally- mixed size pencil beams for heavy ion radiotherapy. This uses pencil beams with a bigger spot size in the lateral direction and wider mini spread-out Bragg peak (mini-SOBP) to irradiate the inner part of a target volume, and pencil beams with a smaller spot size in the lateral direction and narrower mini-SOBP to irradiate the peripheral part of the target volume. Instead of being controlled by the accelerator, the lateral size of the pencil beam was adjusted by inserting Ta scatterers in the beam delivery line. The longitudinal size Of the pencil beam (i.e. the width of the mini-SOBP) was adjusted by tilting mini ridge filters along the beam direction. The new spot-scanning beam delivery using carbon ions was investigated theoretically and compared with traditional spot-scanning beam delivery. Our results show that the new spot-scanning beam delivery has smaller lateral penumbra, steeper distal dose fall-off and the dose homogeneity (1-standard deviati^n/mean) in the target volume is better than 95%.展开更多
The chiral feature of an optical field can be evaluated by the parameter of g-factor enhancement,which is helpful to enhance chiroptic signals from a chiral dipole.In this work,the superchiral spot has been theoretica...The chiral feature of an optical field can be evaluated by the parameter of g-factor enhancement,which is helpful to enhance chiroptic signals from a chiral dipole.In this work,the superchiral spot has been theoretically proposed in metal-insulator-metal waveguides.The g-factor enhancement of the superchiral spot can be enhanced by 67-fold more than that of circularly polarized light,and the spot is confined in the deep wavelength scale along each spatial dimension.Moreover,the position of the superchiral spot can be tuned by manipulating the incident field.The tunable superchiral spot may find applications in chiral imaging and sensing.展开更多
An active spot beam delivery system for heavy ion therapy has been developed based on the Cooling Storage Ring at HIRFL-CSR, where the pencil carbon-ion beams were scanned within a target volume transversely by a pair...An active spot beam delivery system for heavy ion therapy has been developed based on the Cooling Storage Ring at HIRFL-CSR, where the pencil carbon-ion beams were scanned within a target volume transversely by a pair of orthogonal (horizontal and vertical) dipole magnets to paint the slices of the target volume and longitudinally by active energy variation of the synchrotron slice by slice. The unique techniques such as dose shaping via active energy variation and magnetic deflection constitute a promising three-dimensional conformal even intensity-modulated radiotherapy with heavy ions at HIRFL-CSR. In this paper, the verification of active energy variation and the calibration of steerable beam deflection are shown, as the basic functionality components of the active spot-scanning system. Additionally, based on the capability of creating homogeneous irradiation fields with steerable pencil beams, a radiobiological experiment like cell survival measurement has been performed aiming at comparison of the radiobiological effects under active and passive beam deliveries.展开更多
In indirect drive, reducing peak intensity of a single beam and controlling overlap of multi-beams are two opposite requirements for laser focal spot design. In this paper, an improved laser spot design technique for ...In indirect drive, reducing peak intensity of a single beam and controlling overlap of multi-beams are two opposite requirements for laser focal spot design. In this paper, an improved laser spot design technique for indirect drive built upon the geometric structures of laser propagation into hohlraum has been introduced. The proposed technique is able to generate appropriate continuous phase plate(CPP) producing a special shaped spot that can balance the opposite requirements. The corresponding CPP does not bring difficulties to the design and fabrication. Phase aberrations are more sensitive to the special shaped spot; however, it can be tolerable for the current beam control level.展开更多
基金Supported by the High Technology Research and Development Programme of China (No. 2008AA011102) and the National Natural Science Foundation of China ( No. 60772112).
文摘An effective spot beam handover trigger and channel allocation scheme is proposed for GEO mobile satellite communication based on its characteristic and application. By using both signal strength and terminal location information, necessary handover is triggered promptly and accurately to reduce the negative effect of long signaling delay. Then handover decision is made with the handover queuing and channel allocation strategy. An adaptive channel resource allocation scheme is considered to optimize resource utilization with guarantee of emergency communication, which is significant for emergency rescue and disaster relief. Simulation results show that the proposed scheme prevents unnecessary handover effectively and has favorable adaptability to emergent requirement of satellite communication.
基金Supported by Key Project of National Natural Science Foundation of China(U1232207)National Key Technology Support Program of the Ministry of Science and Technology of China(2015BAI01B11)+1 种基金National Key Research and Development Program of the Ministry of Science and Technology of China(2016YFC0904602)National Natural Science Foundation of China(11075191,11205217,11475231,11505249)
文摘The three-dimensional (3D) spot-scanning method is one of the most commonly used irradiation methods in charged particle beam radiotherapy. Generally, spot-scanning beam delivery utilizes the same size pencil beam to irradiate the tumor targets. Here we propose a spot-scanning beam delivery method with laterally- and longitudinally- mixed size pencil beams for heavy ion radiotherapy. This uses pencil beams with a bigger spot size in the lateral direction and wider mini spread-out Bragg peak (mini-SOBP) to irradiate the inner part of a target volume, and pencil beams with a smaller spot size in the lateral direction and narrower mini-SOBP to irradiate the peripheral part of the target volume. Instead of being controlled by the accelerator, the lateral size of the pencil beam was adjusted by inserting Ta scatterers in the beam delivery line. The longitudinal size Of the pencil beam (i.e. the width of the mini-SOBP) was adjusted by tilting mini ridge filters along the beam direction. The new spot-scanning beam delivery using carbon ions was investigated theoretically and compared with traditional spot-scanning beam delivery. Our results show that the new spot-scanning beam delivery has smaller lateral penumbra, steeper distal dose fall-off and the dose homogeneity (1-standard deviati^n/mean) in the target volume is better than 95%.
基金supported by the National Natural Science Foundation of China(Nos.62075132 and 92050202)Natural Science Foundation of Shanghai(No.22ZR1443100).
文摘The chiral feature of an optical field can be evaluated by the parameter of g-factor enhancement,which is helpful to enhance chiroptic signals from a chiral dipole.In this work,the superchiral spot has been theoretically proposed in metal-insulator-metal waveguides.The g-factor enhancement of the superchiral spot can be enhanced by 67-fold more than that of circularly polarized light,and the spot is confined in the deep wavelength scale along each spatial dimension.Moreover,the position of the superchiral spot can be tuned by manipulating the incident field.The tunable superchiral spot may find applications in chiral imaging and sensing.
基金Supported by National Basic Research Program of China(973Program,2010CB834203)the Key Project of National Natural Science Foundation of China(10835011)+2 种基金National Natural Science Foundation of China(10905080,11075191)the Natural Science Foundation of Gansu Province of China(1010RJZA007)Science and Technology Development Project of Lanzhou City(2008-sr-10,2009-2-12)
文摘An active spot beam delivery system for heavy ion therapy has been developed based on the Cooling Storage Ring at HIRFL-CSR, where the pencil carbon-ion beams were scanned within a target volume transversely by a pair of orthogonal (horizontal and vertical) dipole magnets to paint the slices of the target volume and longitudinally by active energy variation of the synchrotron slice by slice. The unique techniques such as dose shaping via active energy variation and magnetic deflection constitute a promising three-dimensional conformal even intensity-modulated radiotherapy with heavy ions at HIRFL-CSR. In this paper, the verification of active energy variation and the calibration of steerable beam deflection are shown, as the basic functionality components of the active spot-scanning system. Additionally, based on the capability of creating homogeneous irradiation fields with steerable pencil beams, a radiobiological experiment like cell survival measurement has been performed aiming at comparison of the radiobiological effects under active and passive beam deliveries.
基金supported by the National Nature Science Foundation of China (No.11404306)the Presidential Foundation of the Chinese Academy of Engineering Physics (No.YZJJLX2016008)
文摘In indirect drive, reducing peak intensity of a single beam and controlling overlap of multi-beams are two opposite requirements for laser focal spot design. In this paper, an improved laser spot design technique for indirect drive built upon the geometric structures of laser propagation into hohlraum has been introduced. The proposed technique is able to generate appropriate continuous phase plate(CPP) producing a special shaped spot that can balance the opposite requirements. The corresponding CPP does not bring difficulties to the design and fabrication. Phase aberrations are more sensitive to the special shaped spot; however, it can be tolerable for the current beam control level.