The purpose of this paper is to present for the first time an elementary summary of a few recent results obtained through the application of the formal theory of partial differential equations and Lie pseudogroups in ...The purpose of this paper is to present for the first time an elementary summary of a few recent results obtained through the application of the formal theory of partial differential equations and Lie pseudogroups in order to revisit the mathematical foundations of general relativity. Other engineering examples (control theory, elasticity theory, electromagnetism) will also be considered in order to illustrate the three fundamental results that we shall provide successively. 1) VESSIOT VERSUS CARTAN: The quadratic terms appearing in the “Riemann tensor” according to the “Vessiot structure equations” must not be identified with the quadratic terms appearing in the well known “Cartan structure equations” for Lie groups. In particular, “curvature + torsion” (Cartan) must not be considered as a generalization of “curvature alone” (Vessiot). 2) JANET VERSUS SPENCER: The “Ricci tensor” only depends on the nonlinear transformations (called “elations” by Cartan in 1922) that describe the “difference” existing between the Weyl group (10 parameters of the Poincaré subgroup + 1 dilatation) and the conformal group of space-time (15 parameters). It can be defined without using the indices leading to the standard contraction or trace of the Riemann tensor. Meanwhile, we shall obtain the number of components of the Riemann and Weyl tensors without any combinatoric argument on the exchange of indices. Accordingly and contrary to the “Janet sequence”, the “Spencer sequence” for the conformal Killing system and its formal adjoint fully describe the Cosserat equations, Maxwell equations and Weyl equations but General Relativity is not coherent with this result. 3) ALGEBRA VERSUS GEOMETRY: Using the powerful methods of “Algebraic Analysis”, that is a mixture of homological agebra and differential geometry, we shall prove that, contrary to other equations of physics (Cauchy equations, Cosserat equations, Maxwell equations), the Einstein equations cannot be “parametrized”, that is the g展开更多
The purpose of this short but difficult paper is to revisit the mathematical foundations of both General Relativity (GR) and Gauge Theory (GT) in the light of a modern approach to nonlinear systems of ordinary or part...The purpose of this short but difficult paper is to revisit the mathematical foundations of both General Relativity (GR) and Gauge Theory (GT) in the light of a modern approach to nonlinear systems of ordinary or partial differential equations, using new methods from Differential Geometry (D.C. Spencer, 1970), Differential Algebra (J.F. Ritt, 1950 and E. Kolchin, 1973) and Algebraic Analysis (M. Kashiwara, 1970). The main idea is to identify the differential indeterminates of Ritt and Kolchin with the jet coordinates of Spencer, in order to study Differential Duality by using only linear differential operators with coefficients in a differential field K. In particular, the linearized second order Einstein operator and the formal adjoint of the Ricci operator are both parametrizing the 4 first order Cauchy stress equations but cannot themselves be parametrized. In the framework of Homological Algebra, this result is not coherent with the vanishing of a certain second extension module and leads to question the proper origin and existence of gravitational waves. As a byproduct, we also prove that gravitation and electromagnetism only depend on the second order jets (called elations by E. Cartan in 1922) of the system of conformal Killing equations because any 1-form with value in the bundle of elations can be decomposed uniquely into the direct sum (R, F) where R is a section of the Ricci bundle of symmetric covariant 2-tensors and the EM field F is a section of the vector bundle of skew-symmetric 2-tensors. No one of these purely mathematical results could have been obtained by any classical approach. Up to the knowledge of the author, it is also the first time that differential algebra in a modern setting is applied to study the specific algebraic feature of most equations to be found in mathematical physics, particularly in GR.展开更多
Let G be a finite group of Lie type E6 over Fq (adjoint or simply connected) and W be the Weyl group of G. We describe maximal tori T such that T has a complement in its algebraic normalizer N(G, T). It is well known ...Let G be a finite group of Lie type E6 over Fq (adjoint or simply connected) and W be the Weyl group of G. We describe maximal tori T such that T has a complement in its algebraic normalizer N(G, T). It is well known that for each maximal torus T of G there exists an element w ∈ W such that N(G, T )/T ■ CW(w). When T does not have a complement isomorphic to CW(w), we show that w has a lift in N(G, T) of the same order.展开更多
文摘The purpose of this paper is to present for the first time an elementary summary of a few recent results obtained through the application of the formal theory of partial differential equations and Lie pseudogroups in order to revisit the mathematical foundations of general relativity. Other engineering examples (control theory, elasticity theory, electromagnetism) will also be considered in order to illustrate the three fundamental results that we shall provide successively. 1) VESSIOT VERSUS CARTAN: The quadratic terms appearing in the “Riemann tensor” according to the “Vessiot structure equations” must not be identified with the quadratic terms appearing in the well known “Cartan structure equations” for Lie groups. In particular, “curvature + torsion” (Cartan) must not be considered as a generalization of “curvature alone” (Vessiot). 2) JANET VERSUS SPENCER: The “Ricci tensor” only depends on the nonlinear transformations (called “elations” by Cartan in 1922) that describe the “difference” existing between the Weyl group (10 parameters of the Poincaré subgroup + 1 dilatation) and the conformal group of space-time (15 parameters). It can be defined without using the indices leading to the standard contraction or trace of the Riemann tensor. Meanwhile, we shall obtain the number of components of the Riemann and Weyl tensors without any combinatoric argument on the exchange of indices. Accordingly and contrary to the “Janet sequence”, the “Spencer sequence” for the conformal Killing system and its formal adjoint fully describe the Cosserat equations, Maxwell equations and Weyl equations but General Relativity is not coherent with this result. 3) ALGEBRA VERSUS GEOMETRY: Using the powerful methods of “Algebraic Analysis”, that is a mixture of homological agebra and differential geometry, we shall prove that, contrary to other equations of physics (Cauchy equations, Cosserat equations, Maxwell equations), the Einstein equations cannot be “parametrized”, that is the g
基金Supported by National Natural Science Foundation of China( 10671026)the Postdoctoral Scientific Research Foundation of Hei-longjiang Province ( HB200801165)the Fund of Heilongjiang Education Committee ( 11541268)
文摘The purpose of this short but difficult paper is to revisit the mathematical foundations of both General Relativity (GR) and Gauge Theory (GT) in the light of a modern approach to nonlinear systems of ordinary or partial differential equations, using new methods from Differential Geometry (D.C. Spencer, 1970), Differential Algebra (J.F. Ritt, 1950 and E. Kolchin, 1973) and Algebraic Analysis (M. Kashiwara, 1970). The main idea is to identify the differential indeterminates of Ritt and Kolchin with the jet coordinates of Spencer, in order to study Differential Duality by using only linear differential operators with coefficients in a differential field K. In particular, the linearized second order Einstein operator and the formal adjoint of the Ricci operator are both parametrizing the 4 first order Cauchy stress equations but cannot themselves be parametrized. In the framework of Homological Algebra, this result is not coherent with the vanishing of a certain second extension module and leads to question the proper origin and existence of gravitational waves. As a byproduct, we also prove that gravitation and electromagnetism only depend on the second order jets (called elations by E. Cartan in 1922) of the system of conformal Killing equations because any 1-form with value in the bundle of elations can be decomposed uniquely into the direct sum (R, F) where R is a section of the Ricci bundle of symmetric covariant 2-tensors and the EM field F is a section of the vector bundle of skew-symmetric 2-tensors. No one of these purely mathematical results could have been obtained by any classical approach. Up to the knowledge of the author, it is also the first time that differential algebra in a modern setting is applied to study the specific algebraic feature of most equations to be found in mathematical physics, particularly in GR.
基金Russian Science Foundation (project no. 14-21-00065).
文摘Let G be a finite group of Lie type E6 over Fq (adjoint or simply connected) and W be the Weyl group of G. We describe maximal tori T such that T has a complement in its algebraic normalizer N(G, T). It is well known that for each maximal torus T of G there exists an element w ∈ W such that N(G, T )/T ■ CW(w). When T does not have a complement isomorphic to CW(w), we show that w has a lift in N(G, T) of the same order.