We investigate a Heisenberg spin cluster with two particles controlled by a time-dependent magnetic field. The system is controlled by tuning the amplitude, frequency, and interaction time of the three-step time-depen...We investigate a Heisenberg spin cluster with two particles controlled by a time-dependent magnetic field. The system is controlled by tuning the amplitude, frequency, and interaction time of the three-step time-dependent magnetic field. Then we solve the time-dependent Schrodinger equation of the two-particle system, and obtain the time evolution operator. By the three-timestep interaction, the wavefunction evolves from the initial state to the final state, and the total evolution operator can be expressed as a product of the three evolution operators. By adjusting the physical parameters, the key two-qubit logic gate, the C-Not gate, can be realized physically.展开更多
A systematic investigation of the magnetic and transport properties of Ti doped La_(0.67)Ca_(0.33)MnO_3 was reported. The Ti substitution for Mn ions results in a reduction in ferromagnetism and conductivity. The meta...A systematic investigation of the magnetic and transport properties of Ti doped La_(0.67)Ca_(0.33)MnO_3 was reported. The Ti substitution for Mn ions results in a reduction in ferromagnetism and conductivity. The metal-insulator transition temperature is close to Curie temperature which decreases from 274 to 82 K as x increases from 0 to 0.17. The most important effect of Ti doping is to introduce spin clusters in the samples due to the distortion of local lattice and the inhomogeneous magnetic structure induced primarily by the random distribution of Mn ions. A maximum magnetoresistance ratio as large as 90% in 1 T at 122 K was obtained for the sample with x=0.055, which is four times larger than that obtained for LCMO sample at 272 K. There is a remarkable field-history dependent MR in the cooling process for the doped samples while such phenomenon disappears in the warming run. The resistivity follows well the variable range hopping behavior in paramagnetic state. Both the size effect and spin dependent hopping of carriers between the spin clusters should be considered in this system.展开更多
There are some concepts that are accepted in our daily life but are not trivial in physics. One of them is the cluster property that means there exist no relations between two events which are sufficiently separated. ...There are some concepts that are accepted in our daily life but are not trivial in physics. One of them is the cluster property that means there exist no relations between two events which are sufficiently separated. In the works recently published by the author, the extensive and quantitative examination has been made about the violation of cluster property in the correlation function of the spin operator for the quantum spin system. These works have shown that, when we include the symmetry breaking interaction, the effect by the violation is proportional to the inverse of the system size. Therefore this effect is tinny since the system size is quite large. In order to find the effect due to the violation even when the size is large, we propose a new system where additional spins couple with the spin system on the square lattice, where the coupling constant between these systems being assumed to be small. Applying the perturbation theory, we obtain the effective Hamiltonian for the additional system. This Hamiltonian includes Curie-Weiss model that is induced by the violation of the cluster property. Then we find that this effective Hamiltonian has the factor which is the inverse of the system size. Since Curie-Weiss model, which is known to be exactly soluble, has to contain this factor so that the thermodynamical properties are well-defined, the essential factor for the Hamiltonian is determined by the coupling and the strength of the symmetry breaking interaction. Our conclusion is, therefore, that it is possible to observe the effect by the violation of the cluster property at the inverse temperature whose order is given by these parameters.展开更多
Entanglement in quantum theory is a peculiar concept to scientists. With this concept we are forced to re-consider the cluster property which means that one event is irrelevant to another event when they are fully far...Entanglement in quantum theory is a peculiar concept to scientists. With this concept we are forced to re-consider the cluster property which means that one event is irrelevant to another event when they are fully far away. In the recent works we showed that the quasi-degenerate states induce the violation of cluster property in antiferromagnets when the continuous symmetry breaks spontaneously. We expect that the violation of cluster property will be observed in other materials too, because the spontaneous symmetry breaking is found in many systems such as the high temperature superconductors and the superfluidity. In order to examine the cluster property for these materials, we studied a quantum nonlinear sigma model with U(1) symmetry in the previous work. There we showed that the model does have quasi-degenerate states. In this paper we study the quantum nonlinear sigma model with SU(2) symmetry. In our approach we first define the quantum system on the lattice and then adopt the representation where the kinetic term is diagonalized. Since we have no definition on the conjugate variable to the angle variable, we use the angular momentum operators instead for the kinetic term. In this representation we introduce the states with the fixed quantum numbers and carry out numerical calculations using quantum Monte Carlo methods and other methods. Through analytical and numerical studies, we conclude that the energy of the quasi-degenerate state is proportional to the squared total angular momentum as well as to the inverse of the lattice size.展开更多
The cluster state is an indispensable resource for one-way quantum computing (lWQC). We propose a practical scheme for constructing cluster states among nuclear spins in nitrogen-vacancy defect centres (NV centres...The cluster state is an indispensable resource for one-way quantum computing (lWQC). We propose a practical scheme for constructing cluster states among nuclear spins in nitrogen-vacancy defect centres (NV centres) in different diamonds. The entanglement of nuclear spins within an NV centre is made by hyperfine coupling via electron spin, and the entanglement between remote NV centres is accomplished using the parity projection of emitted photons. We discus the possibility to build large-scale nuclear-spin cluster states with diamonds.展开更多
The representative sample La0.58Dy0.09Ca0.33MnO3 of Dy doped La0.67Ca0.33MnO3 rare-earth manganites was investigated. The most important effect of Dy doping is to introduce the magnetoimpurity and form the spin cluste...The representative sample La0.58Dy0.09Ca0.33MnO3 of Dy doped La0.67Ca0.33MnO3 rare-earth manganites was investigated. The most important effect of Dy doping is to introduce the magnetoimpurity and form the spin clusters which induce dramatically large CMR in La0.58Dy0.09Ca0.33MnO3. The fitting results of field-induced resistivity decrease to the Brillouin function indicate that the CMR is caused by the spin dependent hopping between spin clusters. It is the magnetic field that reduces the size of spin clusters and induces a field-induced irreversible CMR behaviour.展开更多
Weak-localization (WL) measurements were performed in a Bi cluster-decorated graphene sheet. The charge concentration was kept constant, and the amplitude of the conductance correction was sup- pressed after the Bi-...Weak-localization (WL) measurements were performed in a Bi cluster-decorated graphene sheet. The charge concentration was kept constant, and the amplitude of the conductance correction was sup- pressed after the Bi-cluster deposition. Detailed WL data were obtained while the gate and temperature were changed. Using E. McCamfs ibrmula, the spin-relaxation time was extracted, which was found to increase with the elastic scattering time. This is attributed to the Elliott-Yafet spin relaxation and Kane-Mele type spin--orbit coupling (SOC). The SOC strength was enhanced to 2.64 meV as a result of the first deposition. The coverage effect is discussed according to the measurement after tim second deposition.展开更多
We report the study of a low temperature cluster glass state in 5% Mn-doped UGa3 heavy fermion compound. This compound transforms from a paramagnetic state to a spin-cluster glass state, which is confirmed by measurin...We report the study of a low temperature cluster glass state in 5% Mn-doped UGa3 heavy fermion compound. This compound transforms from a paramagnetic state to a spin-cluster glass state, which is confirmed by measuring the dc susceptibility and magnetization. The ac susceptibility exhibits a frequency-dependent peak around Tf, which provides direct evidence of the cluster glass state. By analyzing the field-dependent magnetization and frequency-dependent ac susceptibility in detail, we deduce that this compound forms a spin-cluster glass state below Tf.展开更多
Bi(Fe1-xMnx)O3 bulk ceramics with Mn concentration x up to 0.3 were prepared by rapid sintering using sol-gel derived fine powders. Structure transformation is found to depend on the Mn doping concentration by X-ray...Bi(Fe1-xMnx)O3 bulk ceramics with Mn concentration x up to 0.3 were prepared by rapid sintering using sol-gel derived fine powders. Structure transformation is found to depend on the Mn doping concentration by X-ray diffraction and Raman spectroscopy. Bi(Fe1-xMnx)O3 maintains the rhombohedral structure of BiFeO3 with x=0.05 and 0.1, but changes to the orthorhombic structure with x=0.3. Weak ferromagnetism is observed for Bi(Fe1-xMnx)O3 with x=0.05 and 0.1, but stronger paramagnetism is observed for Bi(Fe1-xMnx)O3 with x=0.3 indicating a magnetic phase change from antiferromagnetic to paramagnetic with the structure changing from R3c to C222. Two anomalies at 30 and 140 K are observed for Bi(Fe1-xMnx)O3 with x=0.05 and 0.1. The anomaly at 30 K is concluded to be related to the freezing of cluster spin glass from dc magnetic memory and relaxation measurements.展开更多
CH_3CCo_3(CO)_9 was synthesized from the reaction between chloralose and Co_2(CO)_. The radical anion was generated by electrochemical reduction,and electron spin resonance spectra in THF were recorded by in situ elec...CH_3CCo_3(CO)_9 was synthesized from the reaction between chloralose and Co_2(CO)_. The radical anion was generated by electrochemical reduction,and electron spin resonance spectra in THF were recorded by in situ electrolysis in the sample tube in the ESR cavity at 298 and 110K with the spectral data展开更多
By using the coupled duster method and the numerical density matrix renormalization group method, we investigate the properties of the quantum plateau state in an alternating Heisenberg spin chain. In the absence of a...By using the coupled duster method and the numerical density matrix renormalization group method, we investigate the properties of the quantum plateau state in an alternating Heisenberg spin chain. In the absence of a magnetic field, the results obtained from the coupled cluster method and density matrix renormalization group method both show that the ground state of the aiternating chain is a gapped dimerized state when the parameter a exceeds a critical point ac. The value of the critical points can be determined precisely by a detailed investigation of the behavior of the spin gap. The system therefore possesses an m = 0 plateau state in the presence of a magnetic field When a 〉 ac. In addition to the m = 0 plateau state, the results of density matrix renormaiization group indicate that there is an m = 1/4 plateau state that occurs between two critical fields in the alternating chain if a 〉 1. The mechanism for the m = 1/4 plateau state and the critical behavior of the magnetization as one approaches this plateau state are also discussed.展开更多
Electrical properties and magnetoresistance have been studied in two series of xAg-La0.67(Ca0.65Ba0.35)0.33MnO3 and xPd-La0.67(Ca0.65Ba0.35)0.33MnO3 (abbreviated by xAg-LCBMO and xPd-LCBMO) composites. Both Pd a...Electrical properties and magnetoresistance have been studied in two series of xAg-La0.67(Ca0.65Ba0.35)0.33MnO3 and xPd-La0.67(Ca0.65Ba0.35)0.33MnO3 (abbreviated by xAg-LCBMO and xPd-LCBMO) composites. Both Pd and Ag addition induce a decrease in resistivity and an increase in temperature at which the resistivity reaches its maximum. This is mainly due to the improvement of grain boundaries caused by the segregation of good conductive metal grains on the grain boundaries/surfaces. In addition, both Pd and Ag addition induce a large enhancement of room temperature magnetoresistance (RTMR). Note that 27% molar ratio of Ag addition induces a large RTMR of about 70%, about ten times larger than pure LCBMO, whereas 27% molar ratio Pd addition brings a much larger RTMR of about 170%. The large enhancements of MR can be attributed to the decrease in resistivity of the samples caused by the good conductive metal. On the other hand, the polarization of Pd atoms near the Mn ions on the grain surfaces/boundaries plays a very im-portant role in the increase in MR, which induces a large number of spin clusters in Pd-added samples.展开更多
基金Supported in part by the National Natural Science Foundation of China under Grant Nos 90503088 and 10775100, and the Fund of Theoretical Nuclear Center of HIRFL of China.
文摘We investigate a Heisenberg spin cluster with two particles controlled by a time-dependent magnetic field. The system is controlled by tuning the amplitude, frequency, and interaction time of the three-step time-dependent magnetic field. Then we solve the time-dependent Schrodinger equation of the two-particle system, and obtain the time evolution operator. By the three-timestep interaction, the wavefunction evolves from the initial state to the final state, and the total evolution operator can be expressed as a product of the three evolution operators. By adjusting the physical parameters, the key two-qubit logic gate, the C-Not gate, can be realized physically.
文摘A systematic investigation of the magnetic and transport properties of Ti doped La_(0.67)Ca_(0.33)MnO_3 was reported. The Ti substitution for Mn ions results in a reduction in ferromagnetism and conductivity. The metal-insulator transition temperature is close to Curie temperature which decreases from 274 to 82 K as x increases from 0 to 0.17. The most important effect of Ti doping is to introduce spin clusters in the samples due to the distortion of local lattice and the inhomogeneous magnetic structure induced primarily by the random distribution of Mn ions. A maximum magnetoresistance ratio as large as 90% in 1 T at 122 K was obtained for the sample with x=0.055, which is four times larger than that obtained for LCMO sample at 272 K. There is a remarkable field-history dependent MR in the cooling process for the doped samples while such phenomenon disappears in the warming run. The resistivity follows well the variable range hopping behavior in paramagnetic state. Both the size effect and spin dependent hopping of carriers between the spin clusters should be considered in this system.
文摘There are some concepts that are accepted in our daily life but are not trivial in physics. One of them is the cluster property that means there exist no relations between two events which are sufficiently separated. In the works recently published by the author, the extensive and quantitative examination has been made about the violation of cluster property in the correlation function of the spin operator for the quantum spin system. These works have shown that, when we include the symmetry breaking interaction, the effect by the violation is proportional to the inverse of the system size. Therefore this effect is tinny since the system size is quite large. In order to find the effect due to the violation even when the size is large, we propose a new system where additional spins couple with the spin system on the square lattice, where the coupling constant between these systems being assumed to be small. Applying the perturbation theory, we obtain the effective Hamiltonian for the additional system. This Hamiltonian includes Curie-Weiss model that is induced by the violation of the cluster property. Then we find that this effective Hamiltonian has the factor which is the inverse of the system size. Since Curie-Weiss model, which is known to be exactly soluble, has to contain this factor so that the thermodynamical properties are well-defined, the essential factor for the Hamiltonian is determined by the coupling and the strength of the symmetry breaking interaction. Our conclusion is, therefore, that it is possible to observe the effect by the violation of the cluster property at the inverse temperature whose order is given by these parameters.
文摘Entanglement in quantum theory is a peculiar concept to scientists. With this concept we are forced to re-consider the cluster property which means that one event is irrelevant to another event when they are fully far away. In the recent works we showed that the quasi-degenerate states induce the violation of cluster property in antiferromagnets when the continuous symmetry breaks spontaneously. We expect that the violation of cluster property will be observed in other materials too, because the spontaneous symmetry breaking is found in many systems such as the high temperature superconductors and the superfluidity. In order to examine the cluster property for these materials, we studied a quantum nonlinear sigma model with U(1) symmetry in the previous work. There we showed that the model does have quasi-degenerate states. In this paper we study the quantum nonlinear sigma model with SU(2) symmetry. In our approach we first define the quantum system on the lattice and then adopt the representation where the kinetic term is diagonalized. Since we have no definition on the conjugate variable to the angle variable, we use the angular momentum operators instead for the kinetic term. In this representation we introduce the states with the fixed quantum numbers and carry out numerical calculations using quantum Monte Carlo methods and other methods. Through analytical and numerical studies, we conclude that the energy of the quasi-degenerate state is proportional to the squared total angular momentum as well as to the inverse of the lattice size.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10774042 and 10875039)the Chinese Academy of Sciences and the National Fundamental Research Program of China(Grant No.10974225)
文摘The cluster state is an indispensable resource for one-way quantum computing (lWQC). We propose a practical scheme for constructing cluster states among nuclear spins in nitrogen-vacancy defect centres (NV centres) in different diamonds. The entanglement of nuclear spins within an NV centre is made by hyperfine coupling via electron spin, and the entanglement between remote NV centres is accomplished using the parity projection of emitted photons. We discus the possibility to build large-scale nuclear-spin cluster states with diamonds.
文摘The representative sample La0.58Dy0.09Ca0.33MnO3 of Dy doped La0.67Ca0.33MnO3 rare-earth manganites was investigated. The most important effect of Dy doping is to introduce the magnetoimpurity and form the spin clusters which induce dramatically large CMR in La0.58Dy0.09Ca0.33MnO3. The fitting results of field-induced resistivity decrease to the Brillouin function indicate that the CMR is caused by the spin dependent hopping between spin clusters. It is the magnetic field that reduces the size of spin clusters and induces a field-induced irreversible CMR behaviour.
文摘Weak-localization (WL) measurements were performed in a Bi cluster-decorated graphene sheet. The charge concentration was kept constant, and the amplitude of the conductance correction was sup- pressed after the Bi-cluster deposition. Detailed WL data were obtained while the gate and temperature were changed. Using E. McCamfs ibrmula, the spin-relaxation time was extracted, which was found to increase with the elastic scattering time. This is attributed to the Elliott-Yafet spin relaxation and Kane-Mele type spin--orbit coupling (SOC). The SOC strength was enhanced to 2.64 meV as a result of the first deposition. The coverage effect is discussed according to the measurement after tim second deposition.
基金supported by the Natural Science Foundation of China Academy of Engineering Physic(Grant No.2014A0301013)the National Natural Science Foundation of China(Grant Nos.11304291 and 11504342)
文摘We report the study of a low temperature cluster glass state in 5% Mn-doped UGa3 heavy fermion compound. This compound transforms from a paramagnetic state to a spin-cluster glass state, which is confirmed by measuring the dc susceptibility and magnetization. The ac susceptibility exhibits a frequency-dependent peak around Tf, which provides direct evidence of the cluster glass state. By analyzing the field-dependent magnetization and frequency-dependent ac susceptibility in detail, we deduce that this compound forms a spin-cluster glass state below Tf.
文摘Bi(Fe1-xMnx)O3 bulk ceramics with Mn concentration x up to 0.3 were prepared by rapid sintering using sol-gel derived fine powders. Structure transformation is found to depend on the Mn doping concentration by X-ray diffraction and Raman spectroscopy. Bi(Fe1-xMnx)O3 maintains the rhombohedral structure of BiFeO3 with x=0.05 and 0.1, but changes to the orthorhombic structure with x=0.3. Weak ferromagnetism is observed for Bi(Fe1-xMnx)O3 with x=0.05 and 0.1, but stronger paramagnetism is observed for Bi(Fe1-xMnx)O3 with x=0.3 indicating a magnetic phase change from antiferromagnetic to paramagnetic with the structure changing from R3c to C222. Two anomalies at 30 and 140 K are observed for Bi(Fe1-xMnx)O3 with x=0.05 and 0.1. The anomaly at 30 K is concluded to be related to the freezing of cluster spin glass from dc magnetic memory and relaxation measurements.
文摘CH_3CCo_3(CO)_9 was synthesized from the reaction between chloralose and Co_2(CO)_. The radical anion was generated by electrochemical reduction,and electron spin resonance spectra in THF were recorded by in situ electrolysis in the sample tube in the ESR cavity at 298 and 110K with the spectral data
基金Supported by the National Natural Science Foundation of China under Grant Nos.10804053 and 61203147the Natural Science Foundation of Jiangsu Province under Grant No.BK20131428+2 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions under Grant No.13KJD140003the Scientific Research Foundation of Nanjing University of Posts and Telecommunications under Grant No.NY211008Qing Lan Project of Jiangsu Province
文摘By using the coupled duster method and the numerical density matrix renormalization group method, we investigate the properties of the quantum plateau state in an alternating Heisenberg spin chain. In the absence of a magnetic field, the results obtained from the coupled cluster method and density matrix renormalization group method both show that the ground state of the aiternating chain is a gapped dimerized state when the parameter a exceeds a critical point ac. The value of the critical points can be determined precisely by a detailed investigation of the behavior of the spin gap. The system therefore possesses an m = 0 plateau state in the presence of a magnetic field When a 〉 ac. In addition to the m = 0 plateau state, the results of density matrix renormaiization group indicate that there is an m = 1/4 plateau state that occurs between two critical fields in the alternating chain if a 〉 1. The mechanism for the m = 1/4 plateau state and the critical behavior of the magnetization as one approaches this plateau state are also discussed.
文摘Electrical properties and magnetoresistance have been studied in two series of xAg-La0.67(Ca0.65Ba0.35)0.33MnO3 and xPd-La0.67(Ca0.65Ba0.35)0.33MnO3 (abbreviated by xAg-LCBMO and xPd-LCBMO) composites. Both Pd and Ag addition induce a decrease in resistivity and an increase in temperature at which the resistivity reaches its maximum. This is mainly due to the improvement of grain boundaries caused by the segregation of good conductive metal grains on the grain boundaries/surfaces. In addition, both Pd and Ag addition induce a large enhancement of room temperature magnetoresistance (RTMR). Note that 27% molar ratio of Ag addition induces a large RTMR of about 70%, about ten times larger than pure LCBMO, whereas 27% molar ratio Pd addition brings a much larger RTMR of about 170%. The large enhancements of MR can be attributed to the decrease in resistivity of the samples caused by the good conductive metal. On the other hand, the polarization of Pd atoms near the Mn ions on the grain surfaces/boundaries plays a very im-portant role in the increase in MR, which induces a large number of spin clusters in Pd-added samples.