针对自适应滤波领域的最小均方(Least Mean Square,LMS)算法无法权衡稳态误差和收敛速度这一矛盾,提出了一种改进的变步长LMS自适应滤波算法。该算法在基于对数函数的变步长LMS算法的基础上,建立了一种新的步长参数与误差的关系模型。...针对自适应滤波领域的最小均方(Least Mean Square,LMS)算法无法权衡稳态误差和收敛速度这一矛盾,提出了一种改进的变步长LMS自适应滤波算法。该算法在基于对数函数的变步长LMS算法的基础上,建立了一种新的步长参数与误差的关系模型。仿真结果表明,提出算法与已有算法相比,能够达到更高的收敛精度及更快的收敛速度,在系统不发生时变时,收敛精度分别提高了5 dB和3 dB,当系统发生时变后,收敛精度分别提高了4 dB和2 dB,不论系统是否发生时变,收敛速度都更快。展开更多