该研究应用近红外(near infrared,NIR)漫反射光谱定量分析技术开展了金华大白桃的糖度检测试验研究。用偏最小二乘回归(partial least square regression,PLSR)方法在800-2500nm光谱范围建模,通过比较果汁和不同部位果肉所对应...该研究应用近红外(near infrared,NIR)漫反射光谱定量分析技术开展了金华大白桃的糖度检测试验研究。用偏最小二乘回归(partial least square regression,PLSR)方法在800-2500nm光谱范围建模,通过比较果汁和不同部位果肉所对应的相关模型的预测结果发现:用水果3个部位(顶部、中部、底部)共9个检测点的果肉平均光谱和糖度平均值建立的模型的结果比果汁或单独某个部位果肉(3个检测点)所建立的模型的结果要好。在此基础上,分析了光谱微分和散射校正预处理对建模结果的影响,结果显示微分光谱建立的模型不如原始光谱建立的模型的结果好,光谱的散射校正处理(用多元散射校正MSC和标准正态变量变换SNV两种方法)有助于提高模型的预测性能。最终建立桃子果肉平均光谱经MSC和SNV散射校正后与糖度的相关模型,MSC和SNV对建模结果的影响基本一致,MSC-PLSR和SNV-PLSR模型的相关系数Rcal和交互验证相关系数Rcross-v分别为0.997和0.939。该研究表明近红外光谱检测技术可用于金华大白桃糖度的定量分析。展开更多
成品油混合浓度的预测对成品油顺序输送过程中的安全监控、混油段分割具有重要的意义。本研究配制92#汽油-3#航煤以及3#航煤-0#车柴两组包含不同浓度的混合样品,并对其进行拉曼光谱采集;依次采用归一化、多元散射校正、BaselineWavelet...成品油混合浓度的预测对成品油顺序输送过程中的安全监控、混油段分割具有重要的意义。本研究配制92#汽油-3#航煤以及3#航煤-0#车柴两组包含不同浓度的混合样品,并对其进行拉曼光谱采集;依次采用归一化、多元散射校正、BaselineWavelet基线校正3种光谱预处理方法进行优化;之后采用改进的栈式稀疏自编码器(Stacked Sparse Autoencoder,SSAE)模型对预处理之后的拉曼光谱进行稀疏特征提取,并结合全连接层进行回归预测;最后根据均方根误差(Root Mean Square Error,RMSE)和决定系数(R^(2))两项评价指标,与偏最小二乘回归(Partial Least Square Regression,PLSR)、最小二乘支持向量回归(Least Square Support Vector Machine,LSSVR)以及SSAE 3种模型进行对比。结果表明:改进的SSAE-FC模型表现出更优的预测精度和稳定性,92#汽油-3#航煤混油测试集的R^(2)和RMSEC指标分别为0.9952和0.8932,3#航煤-0#车柴混油测试集的R^(2)和RMSEC指标分别为0.9837和1.1967,且学习得到的稀疏特征的可解释性强。展开更多
文摘该研究应用近红外(near infrared,NIR)漫反射光谱定量分析技术开展了金华大白桃的糖度检测试验研究。用偏最小二乘回归(partial least square regression,PLSR)方法在800-2500nm光谱范围建模,通过比较果汁和不同部位果肉所对应的相关模型的预测结果发现:用水果3个部位(顶部、中部、底部)共9个检测点的果肉平均光谱和糖度平均值建立的模型的结果比果汁或单独某个部位果肉(3个检测点)所建立的模型的结果要好。在此基础上,分析了光谱微分和散射校正预处理对建模结果的影响,结果显示微分光谱建立的模型不如原始光谱建立的模型的结果好,光谱的散射校正处理(用多元散射校正MSC和标准正态变量变换SNV两种方法)有助于提高模型的预测性能。最终建立桃子果肉平均光谱经MSC和SNV散射校正后与糖度的相关模型,MSC和SNV对建模结果的影响基本一致,MSC-PLSR和SNV-PLSR模型的相关系数Rcal和交互验证相关系数Rcross-v分别为0.997和0.939。该研究表明近红外光谱检测技术可用于金华大白桃糖度的定量分析。
文摘成品油混合浓度的预测对成品油顺序输送过程中的安全监控、混油段分割具有重要的意义。本研究配制92#汽油-3#航煤以及3#航煤-0#车柴两组包含不同浓度的混合样品,并对其进行拉曼光谱采集;依次采用归一化、多元散射校正、BaselineWavelet基线校正3种光谱预处理方法进行优化;之后采用改进的栈式稀疏自编码器(Stacked Sparse Autoencoder,SSAE)模型对预处理之后的拉曼光谱进行稀疏特征提取,并结合全连接层进行回归预测;最后根据均方根误差(Root Mean Square Error,RMSE)和决定系数(R^(2))两项评价指标,与偏最小二乘回归(Partial Least Square Regression,PLSR)、最小二乘支持向量回归(Least Square Support Vector Machine,LSSVR)以及SSAE 3种模型进行对比。结果表明:改进的SSAE-FC模型表现出更优的预测精度和稳定性,92#汽油-3#航煤混油测试集的R^(2)和RMSEC指标分别为0.9952和0.8932,3#航煤-0#车柴混油测试集的R^(2)和RMSEC指标分别为0.9837和1.1967,且学习得到的稀疏特征的可解释性强。