在企业管理中,当使用现场备件需求率发生变化时,传统可修件库存策略往往造成备件资源配置不合理。为解决该问题,针对两级可修复备件库存系统,放宽备件分配与送修动态管理模型(Distribution and Repair in Variable Environments,DRIVE)...在企业管理中,当使用现场备件需求率发生变化时,传统可修件库存策略往往造成备件资源配置不合理。为解决该问题,针对两级可修复备件库存系统,放宽备件分配与送修动态管理模型(Distribution and Repair in Variable Environments,DRIVE)中"完全串件系统"假设,建立了基于计划期末设备"停机数不大于允许值概率"及"期望可用度"指标的库存分配模型,并将横向库存调整和库存预分配作为预防库存滞留的资产均衡手段。为描述系统瞬时行为、评估不同库存策略,建立了便于扩展的双线程Monte Carlo仿真模型。在使用现场需求动态变化的条件下,对所建库存模型与传统模型进行了仿真实验。结果分析表明,保障效能相比传统模型有了明显提高,从而验证了模型的有效性。展开更多
In spare parts industries, firms are dealing with a situation which is more and more uncertain due to the supply chain structure and variable demands. This paper presents a Bayesian approach to forecast demand and sub...In spare parts industries, firms are dealing with a situation which is more and more uncertain due to the supply chain structure and variable demands. This paper presents a Bayesian approach to forecast demand and subsequently determine the appropriate parameter S of an ( S - 1 ; S) inventory system for controlling plant spare parts. We apply the Bayesian approach in an innovative way to specify the initial prior distributions of the failure rates, using the initial estimates and the failure history of similar items. According to the proposed method, a lower base stock than the one currently used is sufficient to achieve the desired service level.展开更多
文摘在企业管理中,当使用现场备件需求率发生变化时,传统可修件库存策略往往造成备件资源配置不合理。为解决该问题,针对两级可修复备件库存系统,放宽备件分配与送修动态管理模型(Distribution and Repair in Variable Environments,DRIVE)中"完全串件系统"假设,建立了基于计划期末设备"停机数不大于允许值概率"及"期望可用度"指标的库存分配模型,并将横向库存调整和库存预分配作为预防库存滞留的资产均衡手段。为描述系统瞬时行为、评估不同库存策略,建立了便于扩展的双线程Monte Carlo仿真模型。在使用现场需求动态变化的条件下,对所建库存模型与传统模型进行了仿真实验。结果分析表明,保障效能相比传统模型有了明显提高,从而验证了模型的有效性。
文摘In spare parts industries, firms are dealing with a situation which is more and more uncertain due to the supply chain structure and variable demands. This paper presents a Bayesian approach to forecast demand and subsequently determine the appropriate parameter S of an ( S - 1 ; S) inventory system for controlling plant spare parts. We apply the Bayesian approach in an innovative way to specify the initial prior distributions of the failure rates, using the initial estimates and the failure history of similar items. According to the proposed method, a lower base stock than the one currently used is sufficient to achieve the desired service level.