An ion source for HL-2A Neutral Beam Injection(NBI)was operated successfully in March 2007,in South- western Institute of Physics.A bucket source type and three-grid-system are used in this new ion source design.The f...An ion source for HL-2A Neutral Beam Injection(NBI)was operated successfully in March 2007,in South- western Institute of Physics.A bucket source type and three-grid-system are used in this new ion source design.The filament current of ll00A,filament voltage of 12V,arc current of 1050A,arc voltage of 120V,highest plasmas density of 2.5×10^(12)/cm^3,extracted ion beam density of 0.44A/cm^2,plasma density uniformity better than 5% in the area close to the first grid,duration of 2s,for this new source,have been achieved.The conceptual design,mechanical design and experiment result for the ion source are presented briefly in this paper.展开更多
Coaxial plasma guns are a type of plasma source that produces plasma which propagates radially and axially controlled by the shape of the ground electrode, which has attracted much interest in several applications. In...Coaxial plasma guns are a type of plasma source that produces plasma which propagates radially and axially controlled by the shape of the ground electrode, which has attracted much interest in several applications. In this work, a 120° opening angle of CPG nozzle is used as a plasma gun configuration that operates at the energy of 150 J. The ionization of polyethylene insulator between the electrodes of the gun produces a cloud of hydrogen and carbon plasma.The triple Langmuir probe and Faraday cup are used to measure plasma density and plasma temperature. These methods are used to measure the on-axis and off-axis plasma divergence of the coaxial plasma gun. The peak values of ion densities measured at a distance of 25 mm on-axis from the plasma gun are(1.6±0.5)×10^(19)m^(-3)and(2.8±0.6)×10^(19)m^(-3)for hydrogen and carbon plasma respectively and the peak temperature is 3.02±0.5 eV. The mean propagation velocity of plasma is calculated using the transit times of plasma at different distances from the plasma gun and is found to be 4.54±0.25 cm/μs and 1.81±0.18 cm/μs for hydrogen and carbon plasma respectively. The Debye radius is obtained from the measured experimental data that satisfies the thin sheath approximation. The shot-to-shot stability of plasma parameters facilitates the use of plasma guns in laboratory experiments. These types of plasma sources can be used in many applications like plasma opening switches, plasma devices, and as plasma sources.展开更多
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility(SULF).The peak power reaches 2.4 PW on target without the last amplifying...We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility(SULF).The peak power reaches 2.4 PW on target without the last amplifying during the experiment.The laser energy of 72±9 J is directed to a focal spot of approximately 6μm diameter(full width at half maximum)in 30 fs pulse duration,yielding a focused peak intensity around 2.0×10^(21)W/cm^(2).The first laser-proton acceleration experiment is performed using plain copper and plastic targets.High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4μm via target normal sheath acceleration.For plastic targets of tens of nanometers thick,the proton cut-off energy is approximately 20 MeV,showing ring-like or flamented density distributions.These experimental results reflect the capabilities of the SULF-10 PW beamline,for example,both ultrahigh intensity and relatively good beam contrast.Further optimization for these key parameters is underway,where peak laser intensities of 10^(22)-10^(23)w/cm^(2)are anticipated to support various experiments on extreme field physics.展开更多
Atmospheric pressure low-temperature plasma is a promising tool in biomedicine applications including blood coagulation,bacterial inactivation,sterilization,and cancer treatment,due to its high chemical activity and l...Atmospheric pressure low-temperature plasma is a promising tool in biomedicine applications including blood coagulation,bacterial inactivation,sterilization,and cancer treatment,due to its high chemical activity and limited thermal damage.It is of great importance to develop portable plasma sources that are safe to human touch and suitable for outdoor and household operation.In this work,a portable and rechargeable low-temperature plasma spark discharge device(130 mm×80 mm×35 mm,300 g)was designed.The discharge frequency and plume length were optimized by the selection of resistance,capacitance,electrode gap,and ground electrode aperture.Results show that the spark plasma plume is generated with a length of 12 mm and a frequency of 10 Hz at a capacitance of 0.33μF.resistance of 1 MΩ,electrode gap of 2 mm,and ground electrode aperture of 1.5 mm.Biological tests indicate that the plasma produced by this device contains abundant reactive species,which can be applied in plasma biomedicine,including daily sterilization and wound healing.展开更多
The ion source of the electron cyclotron resonance ion thruster (ECRIT) extracts ions from its ECR plasma to generate thrust, and has the property of low gas consumption (2 seem, standard-state cubic centimeter per...The ion source of the electron cyclotron resonance ion thruster (ECRIT) extracts ions from its ECR plasma to generate thrust, and has the property of low gas consumption (2 seem, standard-state cubic centimeter per minute) and high durability. Due to the indispensable effects of the primary electron in gas discharge, it is important to experimentally clarify the electron energy structure within the ion source of the ECRIT through analyzing the electron energy distribution function (EEDF) of the plasma inside the thruster. In this article the Langmuir probe diagnosing method was used to diagnose the EEDF, from which the effective electron temperature, plasma density and the electron energy probability function (EEPF) were deduced. The experimental results show that the magnetic field influences the curves of EEDF and EEPF and make the effective plasma parameter nonuniform. The diagnosed electron temperature and density from sample points increased from 4 eV/2 ×10^16 m-3 to 10 eV/4×10^16 m-3 with increasing distances from both the axis and the screen grid of the ion source. Electron temperature and density peaking near the wall coincided with the discharge process. However, a double Maxwellian electron distribution was unexpectedly observed at the position near the axis of the ion source and about 30 mm from the screen grid. Besides, the double Maxwellian electron distribution was more likely to emerge at high power and a low gas flow rate. These phenomena were believed to relate to the arrangements of the gas inlets and the magnetic field where the double Maxwellian electron distribution exits. The results of this research may enhance the understanding of the plasma generation process in the ion source of this type and help to improve its performance.展开更多
文摘An ion source for HL-2A Neutral Beam Injection(NBI)was operated successfully in March 2007,in South- western Institute of Physics.A bucket source type and three-grid-system are used in this new ion source design.The filament current of ll00A,filament voltage of 12V,arc current of 1050A,arc voltage of 120V,highest plasmas density of 2.5×10^(12)/cm^3,extracted ion beam density of 0.44A/cm^2,plasma density uniformity better than 5% in the area close to the first grid,duration of 2s,for this new source,have been achieved.The conceptual design,mechanical design and experiment result for the ion source are presented briefly in this paper.
基金supported by Bhabha Atomic Research Centre, Department of Atomic Energy, Government of IndiaDepartment of Atomic Energy, Government of India for financial assistance under DAE Doctoral Fellowship Scheme-2018。
文摘Coaxial plasma guns are a type of plasma source that produces plasma which propagates radially and axially controlled by the shape of the ground electrode, which has attracted much interest in several applications. In this work, a 120° opening angle of CPG nozzle is used as a plasma gun configuration that operates at the energy of 150 J. The ionization of polyethylene insulator between the electrodes of the gun produces a cloud of hydrogen and carbon plasma.The triple Langmuir probe and Faraday cup are used to measure plasma density and plasma temperature. These methods are used to measure the on-axis and off-axis plasma divergence of the coaxial plasma gun. The peak values of ion densities measured at a distance of 25 mm on-axis from the plasma gun are(1.6±0.5)×10^(19)m^(-3)and(2.8±0.6)×10^(19)m^(-3)for hydrogen and carbon plasma respectively and the peak temperature is 3.02±0.5 eV. The mean propagation velocity of plasma is calculated using the transit times of plasma at different distances from the plasma gun and is found to be 4.54±0.25 cm/μs and 1.81±0.18 cm/μs for hydrogen and carbon plasma respectively. The Debye radius is obtained from the measured experimental data that satisfies the thin sheath approximation. The shot-to-shot stability of plasma parameters facilitates the use of plasma guns in laboratory experiments. These types of plasma sources can be used in many applications like plasma opening switches, plasma devices, and as plasma sources.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB16)the National Natural Science Foundation of China(Nos.11875307,11935008,11804348,11705260,11905278 and 11975302)the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2021242).
文摘We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility(SULF).The peak power reaches 2.4 PW on target without the last amplifying during the experiment.The laser energy of 72±9 J is directed to a focal spot of approximately 6μm diameter(full width at half maximum)in 30 fs pulse duration,yielding a focused peak intensity around 2.0×10^(21)W/cm^(2).The first laser-proton acceleration experiment is performed using plain copper and plastic targets.High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4μm via target normal sheath acceleration.For plastic targets of tens of nanometers thick,the proton cut-off energy is approximately 20 MeV,showing ring-like or flamented density distributions.These experimental results reflect the capabilities of the SULF-10 PW beamline,for example,both ultrahigh intensity and relatively good beam contrast.Further optimization for these key parameters is underway,where peak laser intensities of 10^(22)-10^(23)w/cm^(2)are anticipated to support various experiments on extreme field physics.
基金supported by National Natural Science Foundation of China(Nos.51677083 and 51377075)Postgraduate Research and Practice Innovation Program of Jiangsu Province(SJCX18_0340)
文摘Atmospheric pressure low-temperature plasma is a promising tool in biomedicine applications including blood coagulation,bacterial inactivation,sterilization,and cancer treatment,due to its high chemical activity and limited thermal damage.It is of great importance to develop portable plasma sources that are safe to human touch and suitable for outdoor and household operation.In this work,a portable and rechargeable low-temperature plasma spark discharge device(130 mm×80 mm×35 mm,300 g)was designed.The discharge frequency and plume length were optimized by the selection of resistance,capacitance,electrode gap,and ground electrode aperture.Results show that the spark plasma plume is generated with a length of 12 mm and a frequency of 10 Hz at a capacitance of 0.33μF.resistance of 1 MΩ,electrode gap of 2 mm,and ground electrode aperture of 1.5 mm.Biological tests indicate that the plasma produced by this device contains abundant reactive species,which can be applied in plasma biomedicine,including daily sterilization and wound healing.
基金supported by National Natural Science Foundation of China(No.11475137)
文摘The ion source of the electron cyclotron resonance ion thruster (ECRIT) extracts ions from its ECR plasma to generate thrust, and has the property of low gas consumption (2 seem, standard-state cubic centimeter per minute) and high durability. Due to the indispensable effects of the primary electron in gas discharge, it is important to experimentally clarify the electron energy structure within the ion source of the ECRIT through analyzing the electron energy distribution function (EEDF) of the plasma inside the thruster. In this article the Langmuir probe diagnosing method was used to diagnose the EEDF, from which the effective electron temperature, plasma density and the electron energy probability function (EEPF) were deduced. The experimental results show that the magnetic field influences the curves of EEDF and EEPF and make the effective plasma parameter nonuniform. The diagnosed electron temperature and density from sample points increased from 4 eV/2 ×10^16 m-3 to 10 eV/4×10^16 m-3 with increasing distances from both the axis and the screen grid of the ion source. Electron temperature and density peaking near the wall coincided with the discharge process. However, a double Maxwellian electron distribution was unexpectedly observed at the position near the axis of the ion source and about 30 mm from the screen grid. Besides, the double Maxwellian electron distribution was more likely to emerge at high power and a low gas flow rate. These phenomena were believed to relate to the arrangements of the gas inlets and the magnetic field where the double Maxwellian electron distribution exits. The results of this research may enhance the understanding of the plasma generation process in the ion source of this type and help to improve its performance.