The aim of our study was to assess differences in the expression of genes involved in fruit softening and ethylene biosynthetic pathways under different temperature storage conditions. Different peach cultivars of ‘X...The aim of our study was to assess differences in the expression of genes involved in fruit softening and ethylene biosynthetic pathways under different temperature storage conditions. Different peach cultivars of ‘Xiacui' and ‘Yumyeong', which are stonyhard, ‘Yinhualu', which is softmelting, ‘Hujing Milu', which is hard-melting, and ‘Baby Gold 6', which is non-melting at 80% ripening, were collected as test materials. The results showed that only slight ethylene production was detected after harvesting of ‘Yumyeong' and ‘Xiacui' under either a room temperature(25 °C) or low temperature(4 °C). The fruit firmness of stonyhard cultivars was retained at a high level under room temperature over time, whereas a low temperature induced ‘Yumyeong' fruit to soften. Quantitative real-time PCR results indicated that the PpACS1 gene was highly expressed in soft-melting, hard-melting and non-melting cultivars; however, expression was extremely low in stonyhard peaches. PpACS2 or PpACS3, however,was not detected in all five cultivars. Interestingly, cold treatment significantly decreased firmness along with endo-PG expression obviously upregulated in ‘Yumyeong', but not in ‘Xiacui' peaches. In conclusion, this study revealed that fruit softening of peaches with different flesh textures was closely related to ethylene biosynthesis during the storage period, which was controlled via regulating relevant gene expression levels under different storage temperatures.展开更多
基金supported by the Jiangsu Agriculture Science and Technology Innovation Fund[CX(14)2015]China Agriculture Research System(CARS-31)
文摘The aim of our study was to assess differences in the expression of genes involved in fruit softening and ethylene biosynthetic pathways under different temperature storage conditions. Different peach cultivars of ‘Xiacui' and ‘Yumyeong', which are stonyhard, ‘Yinhualu', which is softmelting, ‘Hujing Milu', which is hard-melting, and ‘Baby Gold 6', which is non-melting at 80% ripening, were collected as test materials. The results showed that only slight ethylene production was detected after harvesting of ‘Yumyeong' and ‘Xiacui' under either a room temperature(25 °C) or low temperature(4 °C). The fruit firmness of stonyhard cultivars was retained at a high level under room temperature over time, whereas a low temperature induced ‘Yumyeong' fruit to soften. Quantitative real-time PCR results indicated that the PpACS1 gene was highly expressed in soft-melting, hard-melting and non-melting cultivars; however, expression was extremely low in stonyhard peaches. PpACS2 or PpACS3, however,was not detected in all five cultivars. Interestingly, cold treatment significantly decreased firmness along with endo-PG expression obviously upregulated in ‘Yumyeong', but not in ‘Xiacui' peaches. In conclusion, this study revealed that fruit softening of peaches with different flesh textures was closely related to ethylene biosynthesis during the storage period, which was controlled via regulating relevant gene expression levels under different storage temperatures.