Soft computing techniques are becoming even more popular and particularly amenable to model the complex behaviors of most geotechnical engineering systems since they have demonstrated superior predictive capacity,comp...Soft computing techniques are becoming even more popular and particularly amenable to model the complex behaviors of most geotechnical engineering systems since they have demonstrated superior predictive capacity,compared to the traditional methods.This paper presents an overview of some soft computing techniques as well as their applications in underground excavations.A case study is adopted to compare the predictive performances of soft computing techniques including eXtreme Gradient Boosting(XGBoost),Multivariate Adaptive Regression Splines(MARS),Artificial Neural Networks(ANN),and Support Vector Machine(SVM) in estimating the maximum lateral wall deflection induced by braced excavation.This study also discusses the merits and the limitations of some soft computing techniques,compared with the conventional approaches available.展开更多
The degradation strength of soils under cyclic loading is studied and a method for determining the cyclic degradation strength with cyclic triaxial tests is given in the paper. Furthermore, a dum my static method for ...The degradation strength of soils under cyclic loading is studied and a method for determining the cyclic degradation strength with cyclic triaxial tests is given in the paper. Furthermore, a dum my static method for estimating the undrained bearing capacity for offshore soft foundation under wave loads is developed. It can consider the effect of the difference of cyclic stress for different parts of the foundation on both the degradation strength of the foundation soil and the bearing capacity so that the estimated result can better reflect the real condition of foundation under cyclic loading. The method can be applied to plane and space problem.展开更多
为了满足储能市场对高功率电池的需求,开发具有高功率性能的锂离子电池负极材料成为必然发展趋势。本文通过湿式合成法将软碳和硬碳的前驱体进行复合,开发了一种新型的复合碳锂离子电池负极材料。考察了其克比容量、库仑效率、倍率性能...为了满足储能市场对高功率电池的需求,开发具有高功率性能的锂离子电池负极材料成为必然发展趋势。本文通过湿式合成法将软碳和硬碳的前驱体进行复合,开发了一种新型的复合碳锂离子电池负极材料。考察了其克比容量、库仑效率、倍率性能以及循环稳定性。用X射线粉末衍射(XRD)、拉曼、扫描电镜(SEM)以及透射电子显微镜(TEM)对所制备的复合碳材料的结构和表面形貌进行表征。结果表明,该复合碳材料同时具有软碳和硬碳的优点,且性能优于机械混合碳,在保持高比容量和高效率的前提下,倍率性能尤为突出,其2C容量可达154 m A·h/g,且2C/0.2C的容量保持率为64.2%;同时0.2C克比容量为240 m A·h/g,库仑效率为82%。经过5C充放电后,恢复0.2C小电流充放电后,容量保持率达99.8%,循环稳定性很好。XRD、拉曼以及透射电子显微镜的表征结果均表明软、硬碳在复合过程中不只是简单机械共混而是具有协同效应。展开更多
The mechanism of a hydro-viscous soft start is of great importance in the design of a hydro-viscous clutch and its control system. To explain the mechanism of a hydro-viscous soft start, the startup process of a belt ...The mechanism of a hydro-viscous soft start is of great importance in the design of a hydro-viscous clutch and its control system. To explain the mechanism of a hydro-viscous soft start, the startup process of a belt conveyor was numerically analyzed with the modified Reynolds equation, an energy equation and a temperature-viscosity equation. The effect of temperature and grooves of the friction disk surface on torque transfer and load capacity of the oil film have also been analyzed. The results show that 1) the grooves are the basis of forming dynamic pressure but they may reduce the capacity of torque transfer to a certain extent, 2) during the startup process, temperature has little effect on torque transfer and load capacity and the variation in load capacity of the oil film is very small, indicating that it is preferable to use the flow rate as a control object than the pressure of the feed cylinder. The results have been verified by an experiment.展开更多
基金supported by High-end Foreign Expert Introduction program (No.G20190022002)Chongqing Construction Science and Technology Plan Project (2019-0045)
文摘Soft computing techniques are becoming even more popular and particularly amenable to model the complex behaviors of most geotechnical engineering systems since they have demonstrated superior predictive capacity,compared to the traditional methods.This paper presents an overview of some soft computing techniques as well as their applications in underground excavations.A case study is adopted to compare the predictive performances of soft computing techniques including eXtreme Gradient Boosting(XGBoost),Multivariate Adaptive Regression Splines(MARS),Artificial Neural Networks(ANN),and Support Vector Machine(SVM) in estimating the maximum lateral wall deflection induced by braced excavation.This study also discusses the merits and the limitations of some soft computing techniques,compared with the conventional approaches available.
基金This project was financially supported by the National Natural Science Foundation of China(No.59679018)
文摘The degradation strength of soils under cyclic loading is studied and a method for determining the cyclic degradation strength with cyclic triaxial tests is given in the paper. Furthermore, a dum my static method for estimating the undrained bearing capacity for offshore soft foundation under wave loads is developed. It can consider the effect of the difference of cyclic stress for different parts of the foundation on both the degradation strength of the foundation soil and the bearing capacity so that the estimated result can better reflect the real condition of foundation under cyclic loading. The method can be applied to plane and space problem.
文摘为了满足储能市场对高功率电池的需求,开发具有高功率性能的锂离子电池负极材料成为必然发展趋势。本文通过湿式合成法将软碳和硬碳的前驱体进行复合,开发了一种新型的复合碳锂离子电池负极材料。考察了其克比容量、库仑效率、倍率性能以及循环稳定性。用X射线粉末衍射(XRD)、拉曼、扫描电镜(SEM)以及透射电子显微镜(TEM)对所制备的复合碳材料的结构和表面形貌进行表征。结果表明,该复合碳材料同时具有软碳和硬碳的优点,且性能优于机械混合碳,在保持高比容量和高效率的前提下,倍率性能尤为突出,其2C容量可达154 m A·h/g,且2C/0.2C的容量保持率为64.2%;同时0.2C克比容量为240 m A·h/g,库仑效率为82%。经过5C充放电后,恢复0.2C小电流充放电后,容量保持率达99.8%,循环稳定性很好。XRD、拉曼以及透射电子显微镜的表征结果均表明软、硬碳在复合过程中不只是简单机械共混而是具有协同效应。
文摘The mechanism of a hydro-viscous soft start is of great importance in the design of a hydro-viscous clutch and its control system. To explain the mechanism of a hydro-viscous soft start, the startup process of a belt conveyor was numerically analyzed with the modified Reynolds equation, an energy equation and a temperature-viscosity equation. The effect of temperature and grooves of the friction disk surface on torque transfer and load capacity of the oil film have also been analyzed. The results show that 1) the grooves are the basis of forming dynamic pressure but they may reduce the capacity of torque transfer to a certain extent, 2) during the startup process, temperature has little effect on torque transfer and load capacity and the variation in load capacity of the oil film is very small, indicating that it is preferable to use the flow rate as a control object than the pressure of the feed cylinder. The results have been verified by an experiment.