The Herz-type Sobolev spaces are introduced and the Sobolev theorem is established. The Herz-type Bessel potential spaces and the relation between the Herz-type Sobolev spaces and Bessel potential spaces are discussed...The Herz-type Sobolev spaces are introduced and the Sobolev theorem is established. The Herz-type Bessel potential spaces and the relation between the Herz-type Sobolev spaces and Bessel potential spaces are discussed. As applications of these theories, some regularity results of nonlinear quantities appearing in the compensated compactness theory on Herz-type Hardy spaces are given.展开更多
In this paper we characterize commuting dual Toeplitz operators with harmonic symbols on the orthogonal complement of the Dirichlet space in the Sobolev space. We also obtain the sufficient and necessary conditions fo...In this paper we characterize commuting dual Toeplitz operators with harmonic symbols on the orthogonal complement of the Dirichlet space in the Sobolev space. We also obtain the sufficient and necessary conditions for the product of two dual Toeplitz operators with harmonic symbols to be a finite rank perturbation of a dual Toeplitz operator.展开更多
Let L be a one-to-one operator of type w having a bounded H∞ functional calculus and satisfying the k-Davies-Gaffney estimates with k C N. In this paper, the authors introduce the Hardy space HPL(Rn) with p ∈(0, ...Let L be a one-to-one operator of type w having a bounded H∞ functional calculus and satisfying the k-Davies-Gaffney estimates with k C N. In this paper, the authors introduce the Hardy space HPL(Rn) with p ∈(0, 1] associated with L in terms of square functions defined via {e-t2kL}t〉O and establish their molecular and generalized square function characterizations. Typical examples of such operators include the 2k-order divergence form homogeneous elliptic operator L1 with complex bounded measurable coefficients and the 2k-order Schr6dinger type operator L2 := (-△)k + Vk, where A is the Laplacian and 0≤V C Llkoc(Rn). Moreover, as an application, for i E {1, 2}, the authors prove that the associated Riesz transform Vk(Li-1/2) p n HP(Rn) for @ (n/(n + k), 1] and establish the Riesz transform characterizations is bounded from HLI(IR ) to p of HPL1(]Rn) for p C (rn/(n + kr), 1] if {e-tL1 }t〉o satisfies the Lr - L2 k-off-diagonal estimates with r C (1, 2]. These results when k := I and L := L1 are known.展开更多
In this paper we investigate some algebra properties of dual Toeplitz operators on the orthogonal complement of the Dirichlet space in the Sobolev space. We completely characterize commuting dual Toeplitz operators wi...In this paper we investigate some algebra properties of dual Toeplitz operators on the orthogonal complement of the Dirichlet space in the Sobolev space. We completely characterize commuting dual Toeplitz operators with harmonic symbols, and show that a dual Toeplitz operator commutes with a nonconstant analytic dual Toeplitz operator if and only if its symbol is analytic. We also obtain the sufficient and necessary conditions on the harmonic symbols for SφSφψ= Sφψ.展开更多
We discuss Toeplitz operators on Fock-Sobolev space with positive measure symbols.By FockCarleson measure,we obtain the characterizations for boundedness and compactness of Toeplitz operators.We also give some equival...We discuss Toeplitz operators on Fock-Sobolev space with positive measure symbols.By FockCarleson measure,we obtain the characterizations for boundedness and compactness of Toeplitz operators.We also give some equivalent conditions of Schatten p-class properties of Toeplitz operators by Berezin transform.展开更多
This paper introduces the fractional Sobolev spaces on spaces of homogeneous type, including metric spaces and fractals. These Sobolev spaces include the well-known Hajtasz-Sobolev spaces as special models. The author...This paper introduces the fractional Sobolev spaces on spaces of homogeneous type, including metric spaces and fractals. These Sobolev spaces include the well-known Hajtasz-Sobolev spaces as special models. The author establishes various characterizations of (sharp) maximal functions for these spaces. As applications, the author identifies the fractional Sobolev spaces with some Lipscitz-type spaces. Moreover, some embedding theorems are also given.展开更多
In this paper,some properties of Hardy-Sobolev spaces are obtained. The multipliers on these spaces are defined,and our results show that the multiplier algebra is more complex than that on the classical Hardy spaces....In this paper,some properties of Hardy-Sobolev spaces are obtained. The multipliers on these spaces are defined,and our results show that the multiplier algebra is more complex than that on the classical Hardy spaces. In addition,the spectrum theorem is obtained for some special multiplier.展开更多
In this paper,we focus on studying weighted Poincare inequalities on stratified Lie groups.We derive various Poincaréinequalities in the case 1<p=q<∞ in the high order Sobolev space Wm,p.We derive several ...In this paper,we focus on studying weighted Poincare inequalities on stratified Lie groups.We derive various Poincaréinequalities in the case 1<p=q<∞ in the high order Sobolev space Wm,p.We derive several Poincare inequalities that complement existing results,which have only been proved for the case 1<p<q<∞.展开更多
In this paper,pseudo-differential operators with homogeneous symbol classes associated with the Weinstein transform are introduced.The boundedness of pseudo-differential operators and commutator between two pseudo-dif...In this paper,pseudo-differential operators with homogeneous symbol classes associated with the Weinstein transform are introduced.The boundedness of pseudo-differential operators and commutator between two pseudo-differential operators on H_(α,2)^(r) are proven with the help of the Weinstein transform technique.展开更多
In this paper, by discovering a new fact that the Lebesgue boundedness of a class of pseudo- differential operators implies the Sobolev boundedness of another related class of pseudo-differential operators, the author...In this paper, by discovering a new fact that the Lebesgue boundedness of a class of pseudo- differential operators implies the Sobolev boundedness of another related class of pseudo-differential operators, the authors establish the boundedness of pseudo-differential operators with symbols in Sρ,δ^m on Sobolev spaces, where ∈ R, ρ≤ 1 and δ≤ 1. As its applications, the boundedness of commutators generated by pseudo-differential operators on Sobolev and Bessel potential spaces is deduced. Moreover, the boundedness of pseudo-differential operators on Lipschitz spaces is also obtained.展开更多
Finite element method (FEM) is an efficient numerical tool for the solution of partial differential equations (PDEs). It is one of the most general methods when compared to other numerical techniques. PDEs posed in a ...Finite element method (FEM) is an efficient numerical tool for the solution of partial differential equations (PDEs). It is one of the most general methods when compared to other numerical techniques. PDEs posed in a variational form over a given space, say a Hilbert space, are better numerically handled with the FEM. The FEM algorithm is used in various applications which includes fluid flow, heat transfer, acoustics, structural mechanics and dynamics, electric and magnetic field, etc. Thus, in this paper, the Finite Element Orthogonal Collocation Approach (FEOCA) is established for the approximate solution of Time Fractional Telegraph Equation (TFTE) with Mamadu-Njoseh polynomials as grid points corresponding to new basis functions constructed in the finite element space. The FEOCA is an elegant mixture of the Finite Element Method (FEM) and the Orthogonal Collocation Method (OCM). Two numerical examples are experimented on to verify the accuracy and rate of convergence of the method as compared with the theoretical results, and other methods in literature.展开更多
基金Project supported by the National Science Foundation of China.
文摘The Herz-type Sobolev spaces are introduced and the Sobolev theorem is established. The Herz-type Bessel potential spaces and the relation between the Herz-type Sobolev spaces and Bessel potential spaces are discussed. As applications of these theories, some regularity results of nonlinear quantities appearing in the compensated compactness theory on Herz-type Hardy spaces are given.
文摘In this paper we characterize commuting dual Toeplitz operators with harmonic symbols on the orthogonal complement of the Dirichlet space in the Sobolev space. We also obtain the sufficient and necessary conditions for the product of two dual Toeplitz operators with harmonic symbols to be a finite rank perturbation of a dual Toeplitz operator.
基金supported by National Natural Science Foundation of China (Grant No.11171027)Program for Changjiang Scholars and Innovative Research Team in University of China
文摘Let L be a one-to-one operator of type w having a bounded H∞ functional calculus and satisfying the k-Davies-Gaffney estimates with k C N. In this paper, the authors introduce the Hardy space HPL(Rn) with p ∈(0, 1] associated with L in terms of square functions defined via {e-t2kL}t〉O and establish their molecular and generalized square function characterizations. Typical examples of such operators include the 2k-order divergence form homogeneous elliptic operator L1 with complex bounded measurable coefficients and the 2k-order Schr6dinger type operator L2 := (-△)k + Vk, where A is the Laplacian and 0≤V C Llkoc(Rn). Moreover, as an application, for i E {1, 2}, the authors prove that the associated Riesz transform Vk(Li-1/2) p n HP(Rn) for @ (n/(n + k), 1] and establish the Riesz transform characterizations is bounded from HLI(IR ) to p of HPL1(]Rn) for p C (rn/(n + kr), 1] if {e-tL1 }t〉o satisfies the Lr - L2 k-off-diagonal estimates with r C (1, 2]. These results when k := I and L := L1 are known.
文摘In this paper we investigate some algebra properties of dual Toeplitz operators on the orthogonal complement of the Dirichlet space in the Sobolev space. We completely characterize commuting dual Toeplitz operators with harmonic symbols, and show that a dual Toeplitz operator commutes with a nonconstant analytic dual Toeplitz operator if and only if its symbol is analytic. We also obtain the sufficient and necessary conditions on the harmonic symbols for SφSφψ= Sφψ.
基金supported by National Natural Science Foundation of China (Grant Nos.11271092 and 11301101)Guangzhou Higher Education Science and Technology Project (Grant No.2012A018)
文摘We discuss Toeplitz operators on Fock-Sobolev space with positive measure symbols.By FockCarleson measure,we obtain the characterizations for boundedness and compactness of Toeplitz operators.We also give some equivalent conditions of Schatten p-class properties of Toeplitz operators by Berezin transform.
基金The work was supported by the National Natural Science Foundation of China(Grant No,10271015)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20020027004).
文摘This paper introduces the fractional Sobolev spaces on spaces of homogeneous type, including metric spaces and fractals. These Sobolev spaces include the well-known Hajtasz-Sobolev spaces as special models. The author establishes various characterizations of (sharp) maximal functions for these spaces. As applications, the author identifies the fractional Sobolev spaces with some Lipscitz-type spaces. Moreover, some embedding theorems are also given.
基金supported by National Natural Science Foundation of China(Grant No.11271092)Doctoral Fund of Ministry of Education of China(Grant No.20114410110001)
文摘In this paper,some properties of Hardy-Sobolev spaces are obtained. The multipliers on these spaces are defined,and our results show that the multiplier algebra is more complex than that on the classical Hardy spaces. In addition,the spectrum theorem is obtained for some special multiplier.
文摘In this paper,we focus on studying weighted Poincare inequalities on stratified Lie groups.We derive various Poincaréinequalities in the case 1<p=q<∞ in the high order Sobolev space Wm,p.We derive several Poincare inequalities that complement existing results,which have only been proved for the case 1<p<q<∞.
基金Supported by SERB MATRICS(Grant No.MTR2021/000266)。
文摘In this paper,pseudo-differential operators with homogeneous symbol classes associated with the Weinstein transform are introduced.The boundedness of pseudo-differential operators and commutator between two pseudo-differential operators on H_(α,2)^(r) are proven with the help of the Weinstein transform technique.
基金Supported by National Natural Science Foundation of China (Grant No. 10871024)
文摘In this paper, by discovering a new fact that the Lebesgue boundedness of a class of pseudo- differential operators implies the Sobolev boundedness of another related class of pseudo-differential operators, the authors establish the boundedness of pseudo-differential operators with symbols in Sρ,δ^m on Sobolev spaces, where ∈ R, ρ≤ 1 and δ≤ 1. As its applications, the boundedness of commutators generated by pseudo-differential operators on Sobolev and Bessel potential spaces is deduced. Moreover, the boundedness of pseudo-differential operators on Lipschitz spaces is also obtained.
文摘Finite element method (FEM) is an efficient numerical tool for the solution of partial differential equations (PDEs). It is one of the most general methods when compared to other numerical techniques. PDEs posed in a variational form over a given space, say a Hilbert space, are better numerically handled with the FEM. The FEM algorithm is used in various applications which includes fluid flow, heat transfer, acoustics, structural mechanics and dynamics, electric and magnetic field, etc. Thus, in this paper, the Finite Element Orthogonal Collocation Approach (FEOCA) is established for the approximate solution of Time Fractional Telegraph Equation (TFTE) with Mamadu-Njoseh polynomials as grid points corresponding to new basis functions constructed in the finite element space. The FEOCA is an elegant mixture of the Finite Element Method (FEM) and the Orthogonal Collocation Method (OCM). Two numerical examples are experimented on to verify the accuracy and rate of convergence of the method as compared with the theoretical results, and other methods in literature.