期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Smarandachely Adjacent-vertex-distinguishing Proper Edge Coloring ofK4 V Kn 被引量:1
1
作者 CHEN Xiang-en YA O Bing 《Chinese Quarterly Journal of Mathematics》 CSCD 2014年第1期76-87,共12页
Let f be a proper edge coloring of G using k colors. For each x ∈ V(G), the set of the colors appearing on the edges incident with x is denoted by Sf(x) or simply S(x) if no confusion arise. If S(u) = S(v) ... Let f be a proper edge coloring of G using k colors. For each x ∈ V(G), the set of the colors appearing on the edges incident with x is denoted by Sf(x) or simply S(x) if no confusion arise. If S(u) = S(v) and S(v) S(u) for any two adjacent vertices u and v, then f is called a Smarandachely adjacent vertex distinguishing proper edge col- oring using k colors, or k-SA-edge coloring. The minimum number k for which G has a Smarandachely adjacent-vertex-distinguishing proper edge coloring using k colors is called the Smarandachely adjacent-vertex-distinguishing proper edge chromatic number, or SA- edge chromatic number for short, and denoted by Xsa(G). In this paper, we have discussed the SA-edge chromatic number of K4 V Kn. 展开更多
关键词 complete graphs join of graphs smarandachely adjacent-vertex-distinguishing proper edge coloring smarandachely adjacent-vertex-distinguishing proper edge chromatic number
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部