针对一类单输入单输出(single-input single-output,SISO)非仿射非线性系统的控制问题,提出了一种自学习滑模抗扰控制方法.该方法用非线性光滑函数设计扩张状态观测器,实现SISO非仿射非线性系统内部不确定性和外部扰动的扩张状态估计,...针对一类单输入单输出(single-input single-output,SISO)非仿射非线性系统的控制问题,提出了一种自学习滑模抗扰控制方法.该方法用非线性光滑函数设计扩张状态观测器,实现SISO非仿射非线性系统内部不确定性和外部扰动的扩张状态估计,并将扩张状态观测器(extended state observer,ESO)与自学习滑模控制技术融为一体,实现SISO非仿射非线性系统的自学习滑模抗扰控制.该方法不依赖受控对象的数学模型,可以快速跟踪任意给定的参考信号.数值仿真试验表明了该方法响应速度快、控制精度高,具有很强的抗扰动能力,因而是一种鲁棒稳定性很强的控制方法,在SISO非仿射非线性系统控制领域具有重要作用.展开更多
为了提高圆筒永磁直线电机(tubular permanent magnet linear motor,TPMLM)在不匹配扰动下的调速性能,提出一种基于内模的滑模速度控制策略。该策略采用内模控制方法(internal model control,IMC)将TPMLM系统变换为1阶惯性系统,进而系...为了提高圆筒永磁直线电机(tubular permanent magnet linear motor,TPMLM)在不匹配扰动下的调速性能,提出一种基于内模的滑模速度控制策略。该策略采用内模控制方法(internal model control,IMC)将TPMLM系统变换为1阶惯性系统,进而系统响应速度由IMC调制系数a决定,实现了电机速度快速跟随且无超调,简化了动态性能设计。采用2阶扰动观测器观测系统不匹配扰动,并将其引入滑模面,滑模控制器与扰动观测器相结合,提高系统对不匹配扰动的鲁棒性能;同时将反馈电流引入速度控制,实现了速度、电流的双重闭环控制。仿真和实验结果验证了所提控制策略的有效性。展开更多
针对四旋翼无人机轨迹跟踪过程易受外界未知干扰而引起跟踪误差的问题,设计了基于积分反步法的滑模位置控制器。在该控制系统中,位置回路采用滑模积分反步法(sliding mode integral backstepping,IBS-SMC)非线性控制方法,姿态回路采用...针对四旋翼无人机轨迹跟踪过程易受外界未知干扰而引起跟踪误差的问题,设计了基于积分反步法的滑模位置控制器。在该控制系统中,位置回路采用滑模积分反步法(sliding mode integral backstepping,IBS-SMC)非线性控制方法,姿态回路采用经典比例积分微分(proportion integration differentiation,PID)控制方法。通过仿真对PID、线性二次型调节器、IBS-SMC进行了比较。仿真结果表明与传统方法相比,IBS-SMC法具有更好的抗干扰能力与控制精度。最后通过飞行实验,检验了控制算法可行性。实验结果表明,所设计的IBS-SMC是一种符合工程实际的控制方法。展开更多
A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain st...A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain strict-feedback nonlinear systems is formulated. Second, the detailed design of NNAGSBSMC is described. The sliding mode control(SMC) law is designed to track a referenced output via backstepping technique.To decrease chattering result from SMC, a radial basis function neural network(RBFNN) is employed to construct the NNAGSBSMC to facilitate adaptive gain scheduling, in which the gains are scheduled adaptively via neural network(NN), with sliding surface and its differential as NN inputs and the gains as NN outputs. Finally, the verification example is given to show the effectiveness and robustness of the proposed approach. Contrasting simulation results indicate that the NNAGS-BSMC decreases the chattering effectively and has better control performance against the BSMC.展开更多
文摘针对一类单输入单输出(single-input single-output,SISO)非仿射非线性系统的控制问题,提出了一种自学习滑模抗扰控制方法.该方法用非线性光滑函数设计扩张状态观测器,实现SISO非仿射非线性系统内部不确定性和外部扰动的扩张状态估计,并将扩张状态观测器(extended state observer,ESO)与自学习滑模控制技术融为一体,实现SISO非仿射非线性系统的自学习滑模抗扰控制.该方法不依赖受控对象的数学模型,可以快速跟踪任意给定的参考信号.数值仿真试验表明了该方法响应速度快、控制精度高,具有很强的抗扰动能力,因而是一种鲁棒稳定性很强的控制方法,在SISO非仿射非线性系统控制领域具有重要作用.
文摘为了提高圆筒永磁直线电机(tubular permanent magnet linear motor,TPMLM)在不匹配扰动下的调速性能,提出一种基于内模的滑模速度控制策略。该策略采用内模控制方法(internal model control,IMC)将TPMLM系统变换为1阶惯性系统,进而系统响应速度由IMC调制系数a决定,实现了电机速度快速跟随且无超调,简化了动态性能设计。采用2阶扰动观测器观测系统不匹配扰动,并将其引入滑模面,滑模控制器与扰动观测器相结合,提高系统对不匹配扰动的鲁棒性能;同时将反馈电流引入速度控制,实现了速度、电流的双重闭环控制。仿真和实验结果验证了所提控制策略的有效性。
基金supported by the National Natural Science Foundation of China(11502288)the Natural Science Foundation of Hunan Province(2016JJ3019)+1 种基金the Aeronautical Science Foundation of China(2017ZA88001)the Scientific Research Project of National University of Defense Technology(ZK17-03-32)
文摘A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain strict-feedback nonlinear systems is formulated. Second, the detailed design of NNAGSBSMC is described. The sliding mode control(SMC) law is designed to track a referenced output via backstepping technique.To decrease chattering result from SMC, a radial basis function neural network(RBFNN) is employed to construct the NNAGSBSMC to facilitate adaptive gain scheduling, in which the gains are scheduled adaptively via neural network(NN), with sliding surface and its differential as NN inputs and the gains as NN outputs. Finally, the verification example is given to show the effectiveness and robustness of the proposed approach. Contrasting simulation results indicate that the NNAGS-BSMC decreases the chattering effectively and has better control performance against the BSMC.