Skyline group, also named as combinational skyline or group-based skyline, has attracted more attention recently. The concept of skyline groups is proposed to address the problem in the inadequacy of the traditional s...Skyline group, also named as combinational skyline or group-based skyline, has attracted more attention recently. The concept of skyline groups is proposed to address the problem in the inadequacy of the traditional skyline to answer queries that need to analyze not only individual points but also groups of points. Skyline group algorithms aim at finding groups of points that are not dominated by any other same-size groups. Although two types of dominance relationship exist between the groups defined in existing works, they have not been compared systematically under the same experimental framework. Thus, practitioners face difficulty in selecting an appropriate definition. Furthermore, the experimental evaluation in most existing works features a weakness,that is, studies only experimented on small data sets or large data sets with small dimensions. For comprehensive comparisons of the two types of definition and existing algorithms, we evaluate each algorithm in terms of time and space on various synthetic and real data sets. We reveal the characteristics of existing algorithms and provide guidelines on selecting algorithms for different situations.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61502511,61501482,and 61502513)
文摘Skyline group, also named as combinational skyline or group-based skyline, has attracted more attention recently. The concept of skyline groups is proposed to address the problem in the inadequacy of the traditional skyline to answer queries that need to analyze not only individual points but also groups of points. Skyline group algorithms aim at finding groups of points that are not dominated by any other same-size groups. Although two types of dominance relationship exist between the groups defined in existing works, they have not been compared systematically under the same experimental framework. Thus, practitioners face difficulty in selecting an appropriate definition. Furthermore, the experimental evaluation in most existing works features a weakness,that is, studies only experimented on small data sets or large data sets with small dimensions. For comprehensive comparisons of the two types of definition and existing algorithms, we evaluate each algorithm in terms of time and space on various synthetic and real data sets. We reveal the characteristics of existing algorithms and provide guidelines on selecting algorithms for different situations.