With the construction of smart grid,lots of renewable energy resources such as wind and solar are deployed in power system.It might make the power system load varied complex than before which will bring difficulties i...With the construction of smart grid,lots of renewable energy resources such as wind and solar are deployed in power system.It might make the power system load varied complex than before which will bring difficulties in short-term load forecasting area.To overcome this issue,this paper proposes a new short-term load forecasting framework based on big data technologies.First,a cluster analysis is performed to classify daily load patterns for individual loads using smart meter data.Next,an association analysis is used to determine critical influential factors.This is followed by the application of a decision tree to establish classification rules.Then,appropriate forecasting models are chosen for different load patterns.Finally,the forecasted total system load is obtained through an aggregation of an individual load’s forecasting results.Case studies using real load data show that the proposed new framework can guarantee the accuracy of short-term load forecasting within required limits.展开更多
Short-term load forecasting of regional distribution network is the key to the economic operation of smart distribution systems,which not only requires high accuracy and fast calculation speed,but also has a diversity...Short-term load forecasting of regional distribution network is the key to the economic operation of smart distribution systems,which not only requires high accuracy and fast calculation speed,but also has a diversity of influential factors and strong randomness.This paper proposes a short-term load forecasting model for regional distribution network combining the maximum information coefficient,factor analysis,gray wolf optimization,and generalized regression neural network(MIC-FA-GWO-GRNN).To screen and decrease the dimension of the multiple-input features of the short-term load forecasting model,MIC is first used to quantify the non-linear correlation between the load and input features,and to eliminate the ineffective features,and then FA is used to reduce the dimension of the screened input features on the premise of preserving the main information of input features.After that the high-precision short-term丨oad forecasting based on GWO-GRNN model is realized.GRNN is used to regressively analyze the input features after screening and dimension reduction,and the parameter of GRNN is optimized by using the GWO,which has strong global searching ability and fast convergence.Finally a case study of a regional distribution network in Tianjin,China verifies the accuracy and applicability of the proposed forecasting model.展开更多
This paper proposes a hybrid short-term load forecasting method,which is based on the fuzzy combination weights as well as the empirical mode decomposition process(FCW-EMD),and support vector machine optimized via the...This paper proposes a hybrid short-term load forecasting method,which is based on the fuzzy combination weights as well as the empirical mode decomposition process(FCW-EMD),and support vector machine optimized via the Bat algorithm as well as the Kalman filtering process(KF-BA-SVM).The subjective weight is presented as a new theory and is applied to capture the inherent correlation effectively among hourly loads.Based on the proposed objective weights and subjective weights,the fuzzy combination weights theory(FCW)-a new similar day selection theory is presented,which improves the accuracy of the similar day selection,and correspondingly,makes the original data for EMD processing decrease dramatically.BA is introduced to optimize parameters of the SVM model for further improving the forecasting accuracy.Using the decomposed load series via empirical model decomposition(EMD)as inputs to SVM and further correcting the output of SVM via KF,a hybrid FCW-EMD and KF-BA-SVM short-term load forecasting method is established.Numerical case studies on the load forecasting of a transformer substation in south China show that the proposed hybrid forecasting model outperforms other forecasting methods and effectively improves the prediction accuracy.展开更多
文摘With the construction of smart grid,lots of renewable energy resources such as wind and solar are deployed in power system.It might make the power system load varied complex than before which will bring difficulties in short-term load forecasting area.To overcome this issue,this paper proposes a new short-term load forecasting framework based on big data technologies.First,a cluster analysis is performed to classify daily load patterns for individual loads using smart meter data.Next,an association analysis is used to determine critical influential factors.This is followed by the application of a decision tree to establish classification rules.Then,appropriate forecasting models are chosen for different load patterns.Finally,the forecasted total system load is obtained through an aggregation of an individual load’s forecasting results.Case studies using real load data show that the proposed new framework can guarantee the accuracy of short-term load forecasting within required limits.
基金supported by the National Key Research and Development Program of China(2017YFB0903300)Research Program of State Grid Corporation of China(SGTYHT/16-JS-198)the National Natural Science Foundation of China(51807134).
文摘Short-term load forecasting of regional distribution network is the key to the economic operation of smart distribution systems,which not only requires high accuracy and fast calculation speed,but also has a diversity of influential factors and strong randomness.This paper proposes a short-term load forecasting model for regional distribution network combining the maximum information coefficient,factor analysis,gray wolf optimization,and generalized regression neural network(MIC-FA-GWO-GRNN).To screen and decrease the dimension of the multiple-input features of the short-term load forecasting model,MIC is first used to quantify the non-linear correlation between the load and input features,and to eliminate the ineffective features,and then FA is used to reduce the dimension of the screened input features on the premise of preserving the main information of input features.After that the high-precision short-term丨oad forecasting based on GWO-GRNN model is realized.GRNN is used to regressively analyze the input features after screening and dimension reduction,and the parameter of GRNN is optimized by using the GWO,which has strong global searching ability and fast convergence.Finally a case study of a regional distribution network in Tianjin,China verifies the accuracy and applicability of the proposed forecasting model.
文摘This paper proposes a hybrid short-term load forecasting method,which is based on the fuzzy combination weights as well as the empirical mode decomposition process(FCW-EMD),and support vector machine optimized via the Bat algorithm as well as the Kalman filtering process(KF-BA-SVM).The subjective weight is presented as a new theory and is applied to capture the inherent correlation effectively among hourly loads.Based on the proposed objective weights and subjective weights,the fuzzy combination weights theory(FCW)-a new similar day selection theory is presented,which improves the accuracy of the similar day selection,and correspondingly,makes the original data for EMD processing decrease dramatically.BA is introduced to optimize parameters of the SVM model for further improving the forecasting accuracy.Using the decomposed load series via empirical model decomposition(EMD)as inputs to SVM and further correcting the output of SVM via KF,a hybrid FCW-EMD and KF-BA-SVM short-term load forecasting method is established.Numerical case studies on the load forecasting of a transformer substation in south China show that the proposed hybrid forecasting model outperforms other forecasting methods and effectively improves the prediction accuracy.