跨领域文本情感分析时,为了使抽取的共享情感特征能够捕获更多的句子语义信息特征,提出域对抗和BERT(bidirectional encoder representations from transformers)的深度网络模型。利用BERT结构抽取句子语义表示向量,通过卷积神经网络抽...跨领域文本情感分析时,为了使抽取的共享情感特征能够捕获更多的句子语义信息特征,提出域对抗和BERT(bidirectional encoder representations from transformers)的深度网络模型。利用BERT结构抽取句子语义表示向量,通过卷积神经网络抽取句子的局部特征。通过使用域对抗神经网络使得不同领域抽取的特征表示尽量不可判别,即源领域和目标领域抽取的特征具有更多的相似性;通过在有情感标签的源领域数据集上训练情感分类器,期望该分类器在源领域和目标领域均能达到较好的情感分类效果。在亚马逊产品评论数据集上的试验结果表明,该方法具有良好的性能,能够更好地实现跨领域文本情感分类。展开更多
文摘跨领域文本情感分析时,为了使抽取的共享情感特征能够捕获更多的句子语义信息特征,提出域对抗和BERT(bidirectional encoder representations from transformers)的深度网络模型。利用BERT结构抽取句子语义表示向量,通过卷积神经网络抽取句子的局部特征。通过使用域对抗神经网络使得不同领域抽取的特征表示尽量不可判别,即源领域和目标领域抽取的特征具有更多的相似性;通过在有情感标签的源领域数据集上训练情感分类器,期望该分类器在源领域和目标领域均能达到较好的情感分类效果。在亚马逊产品评论数据集上的试验结果表明,该方法具有良好的性能,能够更好地实现跨领域文本情感分类。