Previous studies show that mature faults are filled with fault gouge in the shallow part and thus cannot accumulate enough strain energy for earthquakes. Therefore most earthquakes are deeper than 5 km, except those e...Previous studies show that mature faults are filled with fault gouge in the shallow part and thus cannot accumulate enough strain energy for earthquakes. Therefore most earthquakes are deeper than 5 km, except those events occurring on new faults or in intact rocks. From field observation, Wenchuan earthquake is found to rupture the free surface about 200 km, but the rupture may extend underground much further from teleseismic body waves inversion and aftershocks distribution. In the northeastern end of the rupture zone, deep rupture may induce stress increase near the free surface, and trigger shallow earthquakes. An Ms 5.7 aftershock occurred at Qingchuan, northeast end of Wenchuan earthquake fault on July 24, 2008, featuring thrust mechanism with a 3 km source centroid depth. The shallow focal depth is confirmed with the sPL phase recorded at station L0205. As Rayleigh wave is well only developed for source depth less than 1/5 of epicentral distance, the observed large amplitude of Rg at a distance of 15 km implied depth of 3 km or less. Dozens of aftershocks' sPL waveforms are also analyzed to confirm the source depths less than 3 km. On the other hand, no surface ruptures are found by geological survey or InSAR studies. It is strongly suggested that these aftershock sequences initiate fresh rupture in intact rocks triggered by stress increase from the deep co-seismic rupture of the Wenchuan mainshock.展开更多
The Anninghe fault is a major left-lateral strike-slip fault in southwest China and a seismic gap with a potential earthquake larger than MW 7.0 lies in the Mianning-Xichang segment according to recent observations.Th...The Anninghe fault is a major left-lateral strike-slip fault in southwest China and a seismic gap with a potential earthquake larger than MW 7.0 lies in the Mianning-Xichang segment according to recent observations.The shallow structure of this region can offer a glimpse into the geometry of the fault,which plays an important role in earthquake hazard mitigation.To further investigate the sedimentary structure of the Anninghe fault zone,two dense linear arrays with a station spacing of around 80 m were deployed across the fault.In this study,the H/V spectral ratio(HVSR),together with its peak frequency at each station site,was obtained by applying the Nakamura method.Our findings demonstrate that the peak frequency behaves in high correlation with lithology and is controlled by topography.HVSR in foothills or regions with magmatic intrusion shows a single peak at about 2–3 Hz.In locations with abundant Quaternary sedimentation,such as Anninghe valleys and fracture zones,another low-frequency peak around 0.4 Hz can be noticed in HVSR.By using the empirical relationship,the thickness of the sedimentary layer around the fault fracture zone is estimated to be 300–600 m.Furthermore,the sedimentary interface shows a downward dip to the east,possibly influenced by the east-west extrusion stress.Considering the resonance effect,buildings with 6–9 stories in the valley area of the Anninghe require additional attention in earthquake hazard prevention.展开更多
The 2008 Nura Mw6.7 earthquake occurred in front of the Trans-Alai Range, central Asia. We present Interferometric Synthetic Aperture Radar (InSAR) measurements of its coseismic ground deformation that are available...The 2008 Nura Mw6.7 earthquake occurred in front of the Trans-Alai Range, central Asia. We present Interferometric Synthetic Aperture Radar (InSAR) measurements of its coseismic ground deformation that are available for a major earthquake in the region. Analysis of the InSAR data shows that the earthquake ruptured a secondary fault of the Main Pamir Thrust for about 20 kin. The fault plane striking N46~E and dipping 48~SE is dominated by thrust slip up to 3 m, most of which is confined to the uppermost 2-5 km of the crust, similar to the nearby 1974 MwT.0 Markansu earthquake. The elastic model of interseismic deformation constrained by GPS measurements suggests that the two earthquakes may have resulted from the failures of two high-angle reverse faults that are about 10 km apart and rooted in a locked dScollement at depths of 5-6 kin. The elastic strain is built up by a freely creeping decollement at about 16 mm/a.展开更多
基金supported by Institute of Earthquake Science China Earthquake Adminis-trator (Grant No.02092410)Knowledge Innovation Program of the Chi-nese Academy of Sciences (Grant Nos.KZCX2-YW-116-1, KZCX2-YW-142)+1 种基金National Natural Science Foundation of China (Grant Nos.40674027,40604004)Earthquake Hazard Reduction Program (Grant No.200808078)
文摘Previous studies show that mature faults are filled with fault gouge in the shallow part and thus cannot accumulate enough strain energy for earthquakes. Therefore most earthquakes are deeper than 5 km, except those events occurring on new faults or in intact rocks. From field observation, Wenchuan earthquake is found to rupture the free surface about 200 km, but the rupture may extend underground much further from teleseismic body waves inversion and aftershocks distribution. In the northeastern end of the rupture zone, deep rupture may induce stress increase near the free surface, and trigger shallow earthquakes. An Ms 5.7 aftershock occurred at Qingchuan, northeast end of Wenchuan earthquake fault on July 24, 2008, featuring thrust mechanism with a 3 km source centroid depth. The shallow focal depth is confirmed with the sPL phase recorded at station L0205. As Rayleigh wave is well only developed for source depth less than 1/5 of epicentral distance, the observed large amplitude of Rg at a distance of 15 km implied depth of 3 km or less. Dozens of aftershocks' sPL waveforms are also analyzed to confirm the source depths less than 3 km. On the other hand, no surface ruptures are found by geological survey or InSAR studies. It is strongly suggested that these aftershock sequences initiate fresh rupture in intact rocks triggered by stress increase from the deep co-seismic rupture of the Wenchuan mainshock.
基金This study was jointly supported by the Key Research and Development Program of China(2021YFC3000704,2018YFC1503400)the National Natural Science Foundation of China(42125401)the special fund of Key Laboratory of Earthquake Prediction,CEA(2021IEF0103).
文摘The Anninghe fault is a major left-lateral strike-slip fault in southwest China and a seismic gap with a potential earthquake larger than MW 7.0 lies in the Mianning-Xichang segment according to recent observations.The shallow structure of this region can offer a glimpse into the geometry of the fault,which plays an important role in earthquake hazard mitigation.To further investigate the sedimentary structure of the Anninghe fault zone,two dense linear arrays with a station spacing of around 80 m were deployed across the fault.In this study,the H/V spectral ratio(HVSR),together with its peak frequency at each station site,was obtained by applying the Nakamura method.Our findings demonstrate that the peak frequency behaves in high correlation with lithology and is controlled by topography.HVSR in foothills or regions with magmatic intrusion shows a single peak at about 2–3 Hz.In locations with abundant Quaternary sedimentation,such as Anninghe valleys and fracture zones,another low-frequency peak around 0.4 Hz can be noticed in HVSR.By using the empirical relationship,the thickness of the sedimentary layer around the fault fracture zone is estimated to be 300–600 m.Furthermore,the sedimentary interface shows a downward dip to the east,possibly influenced by the east-west extrusion stress.Considering the resonance effect,buildings with 6–9 stories in the valley area of the Anninghe require additional attention in earthquake hazard prevention.
基金The study is funded by the National Natural Science Foundation of China(41274027,41274037,41374030 and 41474097)
文摘The 2008 Nura Mw6.7 earthquake occurred in front of the Trans-Alai Range, central Asia. We present Interferometric Synthetic Aperture Radar (InSAR) measurements of its coseismic ground deformation that are available for a major earthquake in the region. Analysis of the InSAR data shows that the earthquake ruptured a secondary fault of the Main Pamir Thrust for about 20 kin. The fault plane striking N46~E and dipping 48~SE is dominated by thrust slip up to 3 m, most of which is confined to the uppermost 2-5 km of the crust, similar to the nearby 1974 MwT.0 Markansu earthquake. The elastic model of interseismic deformation constrained by GPS measurements suggests that the two earthquakes may have resulted from the failures of two high-angle reverse faults that are about 10 km apart and rooted in a locked dScollement at depths of 5-6 kin. The elastic strain is built up by a freely creeping decollement at about 16 mm/a.