The source of long-wavelength aeromagnetic anomalies appears to originate from the earth's deep crust. Constrained by previous studies on geochemical, petrologic analysis, the eclogite and serpentinized peridoti...The source of long-wavelength aeromagnetic anomalies appears to originate from the earth's deep crust. Constrained by previous studies on geochemical, petrologic analysis, the eclogite and serpentinized peridotite samples from drill hole ZK703 at Donghai in the western Sulu ultrahigh-pressure (UHP) terrane, East China, were unambiguously exhumed from the lower crust and the upper mantle, providing significant information about the magnetic properties of rocks at a deeper part of the crust. Results show that the serpentinization process favors the neoformation of nearly stoichiometric magnetite, resulting in the enhancement of its magnetization up to 8.6 A/m, which is sufficient enough to contribute to some magnetic anomalies. In contrast, eclogite samples have only weaker magnetization (generally less than 0.05 A/m) compared to serpentinized peridotite. Nevertheless, experiments under the lower crustal conditions are necessary to further support these conclusions.展开更多
Serpentinites,which contain up to 13 wt%of water,are important reservoirs for chemical recycling in subduction zones.In the past two decades,forearc mantle serpentinites were identified in different locations around t...Serpentinites,which contain up to 13 wt%of water,are important reservoirs for chemical recycling in subduction zones.In the past two decades,forearc mantle serpentinites were identified in different locations around the world.Here,we present petrology and whole rock chemistry of ultramafic and mafic rocks dredged from the Hahajima Seamount,which is located 24–40 km west to the junction of the Izu-Bonin Trench and the Mariana Trench.Nearly all the collected samples are extensively hydrated,and olivine grains in ultramafic rocks are replaced by serpentine minerals,with only one sample preserving remaining trace of orthopyroxene.Our new results show that the Hahajima serpentinized peridotite samples are all MgO-rich(~42 wt%),but have low contents in Al2O3,CaO,rare earth and high field strength elements,which is consistent with the overall depleted character of their mantle protoliths.Model calculations indicate that these Hahajima peridotite samples were derived from 10%–25%partial melting of the presumed fertile mantle source,which is generally lower than those of peridotites from Torishima Forearc Seamount,Conical Seamount and South Chamorro Seamount(mostly>25%).All the serpentinites from these four forearc seamounts show strong enrichment in fluid-mobile and lithophile elements(Li,Sr,Pb and U).In details,Hahajima Seamount serpentinites do not have obvious enrichment in Cs and Rb,and display remarkably high abundances of U.These observations indicate that the serpentinization of Hahajima peridotites occurred by addition of seawater or low temperature seawater-derived hydrothermal fluid,without or with little contribution from slab-derived fluids.The geochemical signature of serpentinites from Hahajima Seamount could be interpreted as the result of the combination of extensive partial melting and subsequent percolation of seawater through the mantle wedge.展开更多
文摘The source of long-wavelength aeromagnetic anomalies appears to originate from the earth's deep crust. Constrained by previous studies on geochemical, petrologic analysis, the eclogite and serpentinized peridotite samples from drill hole ZK703 at Donghai in the western Sulu ultrahigh-pressure (UHP) terrane, East China, were unambiguously exhumed from the lower crust and the upper mantle, providing significant information about the magnetic properties of rocks at a deeper part of the crust. Results show that the serpentinization process favors the neoformation of nearly stoichiometric magnetite, resulting in the enhancement of its magnetization up to 8.6 A/m, which is sufficient enough to contribute to some magnetic anomalies. In contrast, eclogite samples have only weaker magnetization (generally less than 0.05 A/m) compared to serpentinized peridotite. Nevertheless, experiments under the lower crustal conditions are necessary to further support these conclusions.
基金The National Natural Science Foundation of China under contract Nos 41506047,41876044 and 91858214the Chinese Academy of Sciences’ Strategic Priority Research Program Grant under contract Nos XDB06030103 and XDB06030204
文摘Serpentinites,which contain up to 13 wt%of water,are important reservoirs for chemical recycling in subduction zones.In the past two decades,forearc mantle serpentinites were identified in different locations around the world.Here,we present petrology and whole rock chemistry of ultramafic and mafic rocks dredged from the Hahajima Seamount,which is located 24–40 km west to the junction of the Izu-Bonin Trench and the Mariana Trench.Nearly all the collected samples are extensively hydrated,and olivine grains in ultramafic rocks are replaced by serpentine minerals,with only one sample preserving remaining trace of orthopyroxene.Our new results show that the Hahajima serpentinized peridotite samples are all MgO-rich(~42 wt%),but have low contents in Al2O3,CaO,rare earth and high field strength elements,which is consistent with the overall depleted character of their mantle protoliths.Model calculations indicate that these Hahajima peridotite samples were derived from 10%–25%partial melting of the presumed fertile mantle source,which is generally lower than those of peridotites from Torishima Forearc Seamount,Conical Seamount and South Chamorro Seamount(mostly>25%).All the serpentinites from these four forearc seamounts show strong enrichment in fluid-mobile and lithophile elements(Li,Sr,Pb and U).In details,Hahajima Seamount serpentinites do not have obvious enrichment in Cs and Rb,and display remarkably high abundances of U.These observations indicate that the serpentinization of Hahajima peridotites occurred by addition of seawater or low temperature seawater-derived hydrothermal fluid,without or with little contribution from slab-derived fluids.The geochemical signature of serpentinites from Hahajima Seamount could be interpreted as the result of the combination of extensive partial melting and subsequent percolation of seawater through the mantle wedge.