The technology of zinc-diffusion to improve catastrophic optical damage (COD) threshold of compressively strained GaInP/AlGaInP quantum well laser diodes has been introduced. After zinc-diffusion, about 20 μm-long re...The technology of zinc-diffusion to improve catastrophic optical damage (COD) threshold of compressively strained GaInP/AlGaInP quantum well laser diodes has been introduced. After zinc-diffusion, about 20 μm-long region at each facet of laser diode has been formed to serve as the window of the lasing light. As a result, the COD threshold has been significantly improved due to the enlargement of bandgap by the zinc-diffusion induced quantum well intermixing, compared with that of the conventional non-window structure. 40-mW continuous wave output power with the fundamental transverse mode has been realized under room temperature for the 3.5μm-wide ridge waveguide diode. The operation current is 84 mA and the slope efficiency is 0.74 W/A at 40 mW. The lasing wavelength is 656 nm.展开更多
In this paper,an ultraviolet C-band laser diode lasing at 277 nm composed of B0.313Ga0.687N/B0.40Ga0.60N QW/QB heterostructure on Mg and Si-doped AlxGa1-xN layers was designed,as well as a lowest reported substitution...In this paper,an ultraviolet C-band laser diode lasing at 277 nm composed of B0.313Ga0.687N/B0.40Ga0.60N QW/QB heterostructure on Mg and Si-doped AlxGa1-xN layers was designed,as well as a lowest reported substitutional accepter and donor concentration up to NA=5.0×10^17 cm^-3 and ND=9.0×10^16 cm^-3 for deep ultraviolet lasing was achieved.The structure was assumed to be grown over bulk AIN substrate and operate under a continuous wave at room temperature.Although there is an emphasizing of the suitability for using boron nitride wide band gap in the deep ultraviolet region,there is still a shortage of investigation about the ternary BGaN in aluminum-rich AIGaN alloys.Based on the simulation,an average local gain in quantum wells of 1946 cm^-1,the maximum emitted power of 2.4 W,the threshold current of 500 mA,a slope efficiency of 1.91 W/A as well as an average DC resistance for the V-I curve of(0.336Ω)had been observed.Along with an investigation regarding different EBL,designs were included with tapered and inverse tapered structure.Therefore,it had been found a good agreement with the published results for tapered EBL design,with an overweighting for a proposed inverse tapered EBL design.展开更多
Two-dimensional (2D) slab photonic crystal waveguides (PCWGs) on silicon-on-insulator (SOI) wafer were designed and fabricated. Full photonic band gap, band gap guided mode, and index guided mode were observed b...Two-dimensional (2D) slab photonic crystal waveguides (PCWGs) on silicon-on-insulator (SOI) wafer were designed and fabricated. Full photonic band gap, band gap guided mode, and index guided mode were observed by measuring the transmission spectra. Mini-stop-bands in the PCWG were simulated with different structure parameters. Coupling characteristics of PCWG were investigated theoretically considering the imperfections during the fabrication process. It was found that suppressing power reservation effect can realize both short coupling length and high coupling efficiency.展开更多
The LPE growth of quaternary InAs11-x-yPxSby with x = 0.2 and y = 0.09 on InAs substrate has been studied. This composition is very suitable for the laser and detector applications at about 2.5 μm. We show that in In...The LPE growth of quaternary InAs11-x-yPxSby with x = 0.2 and y = 0.09 on InAs substrate has been studied. This composition is very suitable for the laser and detector applications at about 2.5 μm. We show that in InAsPSb/InAs system there is a determinate relation between the surface morphology and the lattice mismatch of the epi-wafers, by which we can easily control the melt composition to grow high quality hetero-structures. The reason has been discussed. The p-n junctions with fairly good carrier profile have been prepared in this system.展开更多
The evolution of terahertz (THz) waveform in air plasma driven by low-energy few-cycle laser pulses is investigated to improve the accuracy of the carrier envelope phase (CEP) determination. Based on the transient...The evolution of terahertz (THz) waveform in air plasma driven by low-energy few-cycle laser pulses is investigated to improve the accuracy of the carrier envelope phase (CEP) determination. Based on the transient photocurrent model, a balanced spatial distribution of the Kerr and free-electron effects in the plasma is found at 109 μJ input energy. THz inversion occurs only once at the initial CEP of 0.5π, in which high-precision measurement of the CEP of few-cycle laser pulses is achieved.展开更多
The applied laser energy absorbed in a local area in laser thermal stress cleaving of brittle materials using a controlled fracture technique produces tensile thermal stress that causes the material to separate along ...The applied laser energy absorbed in a local area in laser thermal stress cleaving of brittle materials using a controlled fracture technique produces tensile thermal stress that causes the material to separate along the moving direction of the laser beam. The material separation is similar to crack extension, but the fracture growth is controllable. Using heat transfer theory, we establish a three-dimensional (3D) mathematical thermoelastic calculational model containing a pre-existing crack for a two-point pulsed Nd:YAG laser cleaving silicon wafer. The temperature field and thermal stress field in the silicon wafer are obtained by using the finite element method (FEM). The distribution of the tensile stress and changes in stress intensity factor around the crack tip are analyzed during the pulse duration. Meanwhile, the mechanism of crack propagation is investigated by analyzing the development of the thermal stress field during the cleaving process.展开更多
文摘The technology of zinc-diffusion to improve catastrophic optical damage (COD) threshold of compressively strained GaInP/AlGaInP quantum well laser diodes has been introduced. After zinc-diffusion, about 20 μm-long region at each facet of laser diode has been formed to serve as the window of the lasing light. As a result, the COD threshold has been significantly improved due to the enlargement of bandgap by the zinc-diffusion induced quantum well intermixing, compared with that of the conventional non-window structure. 40-mW continuous wave output power with the fundamental transverse mode has been realized under room temperature for the 3.5μm-wide ridge waveguide diode. The operation current is 84 mA and the slope efficiency is 0.74 W/A at 40 mW. The lasing wavelength is 656 nm.
基金National Key Research and Development Program (Nos. NKRDP 2016YFE0118400)the Key project of Science and Technology of Henan Province (No. 172102410062)+1 种基金National Natural Science Foundation of China (No. 61176008)National Natural Science Foundation of China Henan Provincial Joint Fund Key Project (No. U1604263)
文摘In this paper,an ultraviolet C-band laser diode lasing at 277 nm composed of B0.313Ga0.687N/B0.40Ga0.60N QW/QB heterostructure on Mg and Si-doped AlxGa1-xN layers was designed,as well as a lowest reported substitutional accepter and donor concentration up to NA=5.0×10^17 cm^-3 and ND=9.0×10^16 cm^-3 for deep ultraviolet lasing was achieved.The structure was assumed to be grown over bulk AIN substrate and operate under a continuous wave at room temperature.Although there is an emphasizing of the suitability for using boron nitride wide band gap in the deep ultraviolet region,there is still a shortage of investigation about the ternary BGaN in aluminum-rich AIGaN alloys.Based on the simulation,an average local gain in quantum wells of 1946 cm^-1,the maximum emitted power of 2.4 W,the threshold current of 500 mA,a slope efficiency of 1.91 W/A as well as an average DC resistance for the V-I curve of(0.336Ω)had been observed.Along with an investigation regarding different EBL,designs were included with tapered and inverse tapered structure.Therefore,it had been found a good agreement with the published results for tapered EBL design,with an overweighting for a proposed inverse tapered EBL design.
基金the National Natural Science Foundation of China(NSFC-60537010)the National"973"Program of China(No.2007CB307004 and 2006CB302804)
文摘Two-dimensional (2D) slab photonic crystal waveguides (PCWGs) on silicon-on-insulator (SOI) wafer were designed and fabricated. Full photonic band gap, band gap guided mode, and index guided mode were observed by measuring the transmission spectra. Mini-stop-bands in the PCWG were simulated with different structure parameters. Coupling characteristics of PCWG were investigated theoretically considering the imperfections during the fabrication process. It was found that suppressing power reservation effect can realize both short coupling length and high coupling efficiency.
文摘The LPE growth of quaternary InAs11-x-yPxSby with x = 0.2 and y = 0.09 on InAs substrate has been studied. This composition is very suitable for the laser and detector applications at about 2.5 μm. We show that in InAsPSb/InAs system there is a determinate relation between the surface morphology and the lattice mismatch of the epi-wafers, by which we can easily control the melt composition to grow high quality hetero-structures. The reason has been discussed. The p-n junctions with fairly good carrier profile have been prepared in this system.
基金supported by the Chinese Academy of Sciences,the Chinese Ministry of Science and Technologythe National Natural Science Foundation of China(Nos.60978012,11274326,11134010,and 11127901)the National "973" Program of China(No.2011CB808103)
文摘The evolution of terahertz (THz) waveform in air plasma driven by low-energy few-cycle laser pulses is investigated to improve the accuracy of the carrier envelope phase (CEP) determination. Based on the transient photocurrent model, a balanced spatial distribution of the Kerr and free-electron effects in the plasma is found at 109 μJ input energy. THz inversion occurs only once at the initial CEP of 0.5π, in which high-precision measurement of the CEP of few-cycle laser pulses is achieved.
文摘The applied laser energy absorbed in a local area in laser thermal stress cleaving of brittle materials using a controlled fracture technique produces tensile thermal stress that causes the material to separate along the moving direction of the laser beam. The material separation is similar to crack extension, but the fracture growth is controllable. Using heat transfer theory, we establish a three-dimensional (3D) mathematical thermoelastic calculational model containing a pre-existing crack for a two-point pulsed Nd:YAG laser cleaving silicon wafer. The temperature field and thermal stress field in the silicon wafer are obtained by using the finite element method (FEM). The distribution of the tensile stress and changes in stress intensity factor around the crack tip are analyzed during the pulse duration. Meanwhile, the mechanism of crack propagation is investigated by analyzing the development of the thermal stress field during the cleaving process.