We propose and experimentally demonstrate a photonic method for wideband multipath self-interference cancellation using a silicon photonic modulator chip.The chip generates phase-inverted reference signals by leveragi...We propose and experimentally demonstrate a photonic method for wideband multipath self-interference cancellation using a silicon photonic modulator chip.The chip generates phase-inverted reference signals by leveraging the opposite phase between optical sidebands.Effectively managing amplitude and phase imbalances between self-interference and reference signals,the approach rectifies discrepancies through consistent chip manufacturing and packaging processes.Employing photonic multi-dimensional multiplexing,including wavelength and polarization,enables the acquisition of multiple reference signals.Experimental results show multipath cancellation depths of 25.53 dB and 23.81 dB for bandwidths of 500 MHz and 1 GHz,achieved by superimposing 2-path reference signals.展开更多
The fundamental challenges for full-duplex(FD)relay networks are the self-interference cancellation(SIC)and the cooperative transmission design at the relay.This paper presents a practical amplify-and-forward(AF)FD on...The fundamental challenges for full-duplex(FD)relay networks are the self-interference cancellation(SIC)and the cooperative transmission design at the relay.This paper presents a practical amplify-and-forward(AF)FD one-way relay scheme for orthogonal frequency division multiplexing(OFDM)transmission with multi-domain SIC.It is found that the residual self-interference(SI)signals at the relay can be regarded as an equivalent multipath model.The effects of the residual sI at the relay are incorporated into the equivalent end-to-end channel model,and the inter-block interference can be removed at the destination by using cyclic prefix(CP)protection.Based on the equivalent multipath model,we present a solution for optimizing the amplification factor on the performance of signal-to-interference-plus-noise ratio(SINR)when the equivalent multipath length is longer than the CP.Furthermore,a practical one way FD relay network with 3 nodes is built and measured.The simulation and measured results verify the superior performance of the proposed scheme.展开更多
Oscillator phase noise is one of the bottlenecks that limits the self-interference(SI)cancellation capability of full-duplex systems.In this paper,we propose a method for the suppression of common phase error(CPE)and ...Oscillator phase noise is one of the bottlenecks that limits the self-interference(SI)cancellation capability of full-duplex systems.In this paper,we propose a method for the suppression of common phase error(CPE)and intercarrier interference(ICI)induced by the phase noise in full-duplex orthogonal frequency division multiplexing(OFDM)systems.First,we regard the effect of CPE as a portion of the SI channel and perform estimation,reconstruction and elimination in the time domain.Then,the ICI signal is estimated and suppressed in the frequency domain.Additionally,by analysing the performance of proposed algorithm,we further develop an iterative mechanism to reduce the parameter estimation error and improve SI cancellation capability.Simulation results show that the proposed method has a significant SI cancellation capability improvement over the traditional SI cancellation schemes.展开更多
In this paper,a general scheme in digital self-interference cancellation at baseband for zero-IF full-duplex transceivers is presented. We model the self-interference signals specifically with only the nonlinear disto...In this paper,a general scheme in digital self-interference cancellation at baseband for zero-IF full-duplex transceivers is presented. We model the self-interference signals specifically with only the nonlinear distortion signals falling in receiving band considered. A joint estimation algorithm is proposed for compensating the time delay and frequency offset taking into account the IQ amplitude and phase imbalances from mixers. The memory effect and nonlinear distortion are adaptively estimated by the de-correlated normalized least mean square(DNLMS) algorithm. Numerical simulation results demonstrate that the proposed self-interference cancellation scheme can efficiently compensate the self-interference and outperform the existing traditional solutions.展开更多
Adaptive digital self-interference cancellation(ADSIC)is a significant method to suppress self-interference and improve the performance of the linear frequency modulated continuous wave(LFMCW)radar.Due to efficient im...Adaptive digital self-interference cancellation(ADSIC)is a significant method to suppress self-interference and improve the performance of the linear frequency modulated continuous wave(LFMCW)radar.Due to efficient implementation structure,the conventional method based on least mean square(LMS)is widely used,but its performance is not sufficient for LFMCW radar.To achieve a better self-interference cancellation(SIC)result and more optimal radar performance,we present an ADSIC method based on fractional order LMS(FOLMS),which utilizes the multi-path cancellation structure and adaptively updates the weight coefficients of the cancellation system.First,we derive the iterative expression of the weight coefficients by using the fractional order derivative and short-term memory principle.Then,to solve the problem that it is difficult to select the parameters of the proposed method due to the non-stationary characteristics of radar transmitted signals,we construct the performance evaluation model of LFMCW radar,and analyze the relationship between the mean square deviation and the parameters of FOLMS.Finally,the theoretical analysis and simulation results show that the proposed method has a better SIC performance than the conventional methods.展开更多
基金supported by the National Key Research and Development Program of China(No.2022YFB2802701)the National Natural Science Foundation of China(Nos.U23A20376,62075185,and 62271422)the Sichuan Science Fund for Distinguished Young Scholars(No.24NSFJQ0195).
文摘We propose and experimentally demonstrate a photonic method for wideband multipath self-interference cancellation using a silicon photonic modulator chip.The chip generates phase-inverted reference signals by leveraging the opposite phase between optical sidebands.Effectively managing amplitude and phase imbalances between self-interference and reference signals,the approach rectifies discrepancies through consistent chip manufacturing and packaging processes.Employing photonic multi-dimensional multiplexing,including wavelength and polarization,enables the acquisition of multiple reference signals.Experimental results show multipath cancellation depths of 25.53 dB and 23.81 dB for bandwidths of 500 MHz and 1 GHz,achieved by superimposing 2-path reference signals.
基金supported in part by the National Key R&D Program of China(2021YFA0716500)the National 111 Project(B08038).
文摘The fundamental challenges for full-duplex(FD)relay networks are the self-interference cancellation(SIC)and the cooperative transmission design at the relay.This paper presents a practical amplify-and-forward(AF)FD one-way relay scheme for orthogonal frequency division multiplexing(OFDM)transmission with multi-domain SIC.It is found that the residual self-interference(SI)signals at the relay can be regarded as an equivalent multipath model.The effects of the residual sI at the relay are incorporated into the equivalent end-to-end channel model,and the inter-block interference can be removed at the destination by using cyclic prefix(CP)protection.Based on the equivalent multipath model,we present a solution for optimizing the amplification factor on the performance of signal-to-interference-plus-noise ratio(SINR)when the equivalent multipath length is longer than the CP.Furthermore,a practical one way FD relay network with 3 nodes is built and measured.The simulation and measured results verify the superior performance of the proposed scheme.
基金supported by National Key R&D Program of China under Grant No.2020YFB1805102。
文摘Oscillator phase noise is one of the bottlenecks that limits the self-interference(SI)cancellation capability of full-duplex systems.In this paper,we propose a method for the suppression of common phase error(CPE)and intercarrier interference(ICI)induced by the phase noise in full-duplex orthogonal frequency division multiplexing(OFDM)systems.First,we regard the effect of CPE as a portion of the SI channel and perform estimation,reconstruction and elimination in the time domain.Then,the ICI signal is estimated and suppressed in the frequency domain.Additionally,by analysing the performance of proposed algorithm,we further develop an iterative mechanism to reduce the parameter estimation error and improve SI cancellation capability.Simulation results show that the proposed method has a significant SI cancellation capability improvement over the traditional SI cancellation schemes.
基金supported in part by the National Natural Science Foundation of China(No.61601027)
文摘In this paper,a general scheme in digital self-interference cancellation at baseband for zero-IF full-duplex transceivers is presented. We model the self-interference signals specifically with only the nonlinear distortion signals falling in receiving band considered. A joint estimation algorithm is proposed for compensating the time delay and frequency offset taking into account the IQ amplitude and phase imbalances from mixers. The memory effect and nonlinear distortion are adaptively estimated by the de-correlated normalized least mean square(DNLMS) algorithm. Numerical simulation results demonstrate that the proposed self-interference cancellation scheme can efficiently compensate the self-interference and outperform the existing traditional solutions.
文摘Adaptive digital self-interference cancellation(ADSIC)is a significant method to suppress self-interference and improve the performance of the linear frequency modulated continuous wave(LFMCW)radar.Due to efficient implementation structure,the conventional method based on least mean square(LMS)is widely used,but its performance is not sufficient for LFMCW radar.To achieve a better self-interference cancellation(SIC)result and more optimal radar performance,we present an ADSIC method based on fractional order LMS(FOLMS),which utilizes the multi-path cancellation structure and adaptively updates the weight coefficients of the cancellation system.First,we derive the iterative expression of the weight coefficients by using the fractional order derivative and short-term memory principle.Then,to solve the problem that it is difficult to select the parameters of the proposed method due to the non-stationary characteristics of radar transmitted signals,we construct the performance evaluation model of LFMCW radar,and analyze the relationship between the mean square deviation and the parameters of FOLMS.Finally,the theoretical analysis and simulation results show that the proposed method has a better SIC performance than the conventional methods.