针对传统生物地理优化算法(bio-geographic optimization algorithm,BBO)的种群随机初始策略会降低聚类算法性能的问题,提出了一种基于自组织映射算法(self-organization feature map,SOM)和BBO的混合聚类算法(improved SOM and bio-geo...针对传统生物地理优化算法(bio-geographic optimization algorithm,BBO)的种群随机初始策略会降低聚类算法性能的问题,提出了一种基于自组织映射算法(self-organization feature map,SOM)和BBO的混合聚类算法(improved SOM and bio-geography optimization,ISOMBBO),通过优化初始化神经元权值的方法改进SOM算法,然后以改进的SOM来计算数据聚类的初始簇中心,最后在BBO优化框架下进行数据簇结构的寻优.在4个标准数据集(Iris、Wine、Glass与Diabetes)的实验中,实验结果表明该算法不仅提高聚类的有效性,而且相对于传统的优化算法具有更好的优化能力和收敛度.展开更多
文摘针对传统生物地理优化算法(bio-geographic optimization algorithm,BBO)的种群随机初始策略会降低聚类算法性能的问题,提出了一种基于自组织映射算法(self-organization feature map,SOM)和BBO的混合聚类算法(improved SOM and bio-geography optimization,ISOMBBO),通过优化初始化神经元权值的方法改进SOM算法,然后以改进的SOM来计算数据聚类的初始簇中心,最后在BBO优化框架下进行数据簇结构的寻优.在4个标准数据集(Iris、Wine、Glass与Diabetes)的实验中,实验结果表明该算法不仅提高聚类的有效性,而且相对于传统的优化算法具有更好的优化能力和收敛度.