为了解决自组织映射(Self-organization map,SOM)神经网络算法部分神经元过度利用和欠利用的问题,提出基于类内最小相似度的SOM算法(SOM based on intraclass minimun similarity degree,SOM-IMSD),将类内相似度这一评价指标引入SOM神...为了解决自组织映射(Self-organization map,SOM)神经网络算法部分神经元过度利用和欠利用的问题,提出基于类内最小相似度的SOM算法(SOM based on intraclass minimun similarity degree,SOM-IMSD),将类内相似度这一评价指标引入SOM神经网络学习过程中,通过调整类内最小相似度来指导SOM神经网络学习,使得平均类内最小相似度最大,提高SOM神经网络的聚类结果质量.将SOM-IMSD算法应用于储层预测,并与基本SOM算法进行对比,实验结果表明,SOM-IMSD算法的聚类结果更为准确.展开更多
文摘为了解决自组织映射(Self-organization map,SOM)神经网络算法部分神经元过度利用和欠利用的问题,提出基于类内最小相似度的SOM算法(SOM based on intraclass minimun similarity degree,SOM-IMSD),将类内相似度这一评价指标引入SOM神经网络学习过程中,通过调整类内最小相似度来指导SOM神经网络学习,使得平均类内最小相似度最大,提高SOM神经网络的聚类结果质量.将SOM-IMSD算法应用于储层预测,并与基本SOM算法进行对比,实验结果表明,SOM-IMSD算法的聚类结果更为准确.